Advances in Atmospheric Sciences

, Volume 30, Issue 6, pp 1587–1600

Evaluation of spring persistent rainfall over East Asia in CMIP3/CMIP5 AGCM simulations

  • Jie Zhang (张洁)
  • Laurent Li
  • Tianjun Zhou (周天军)
  • Xiaoge Xin (辛晓歌)


The progress made from Phase 3 to Phase 5 of the Coupled Model Intercomparison Project (CMIP3 to CMIP5) in simulating spring persistent rainfall (SPR) over East Asia was examined from the outputs of nine atmospheric general circulation models (AGCMs). The majority of the models overestimated the precipitation over the SPR domain, with the mean latitude of the SPR belt shifting to the north. The overestimation was about 1mm d−1 in the CMIP3 ensemble, and the northward displacement was about 3°, while in the CMIP5 ensemble the overestimation was suppressed to 0.7 mm d−1 and the northward shift decreased to 2.5°. The SPR features a northeast-southwest extended rain belt with a slope of 0.4°N/°E. The CMIP5 ensemble yielded a smaller slope (0.2°N/°E), whereas the CMIP3 ensemble featured an unrealistic zonally-distributed slope. The CMIP5 models also showed better skill in simulating the interannual variability of SPR. Previous studies have suggested that the zonal land-sea thermal contrast and sensible heat flux over the southeastern Tibetan Plateau are important for the existence of SPR. These two thermal factors were captured well in the CMIP5 ensemble, but underestimated in the CMIP3 ensemble. The variability of zonal land-sea thermal contrast is positively correlated with the rainfall amount over the main SPR center, but it was found that an overestimated thermal contrast between East Asia and South China Sea is a common problem in most of the CMIP3 and CMIP5 models. Simulation of the meridional thermal contrast is therefore important for the future improvement of current AGCMs.

Key words

model comparison CMIP3 CMIP5 spring persistent rainfall (SPR) atmospheric general circulation model (AGCM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chen, H., T. Zhou, R. B. Neale, X. Wu, and G. J. Zhang, 2010: Performance of the new NCAR CAM3.5 in East Asian summer monsoon simulations: Sensitivity to modifications of the convection scheme. J. Climate, 23(13), 3657–3675, doi: 10.1175/2010JCLI3022.1.CrossRefGoogle Scholar
  2. Hasumi, H., and S. Emori, 2004: K-1 coupled model (MIROC) description, K-1 technical report 1. Tech. Report, CCSR, The University of Tokyo, 34pp.Google Scholar
  3. Hu, Z. Z., S. Yang, and R. Wu, 2003: Long-term climate variations in China and global warming signals. J. Geophys. Res., 108(D19), 4614, doi: 10.1029/2003JD003651.CrossRefGoogle Scholar
  4. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1009pp.Google Scholar
  5. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  6. Li, J., and L. Zhang, 2009: Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models. Climate Dyn., 32, 935–968, doi: 10.1007/s00382-008-0465-8.CrossRefGoogle Scholar
  7. Li, J., Y. Liu, and G. Wu, 2009: Cloud radiative forcing in Asian monsoon region simulated by IPCC AR4 AMIP models. Adv. Atmos. Sci., 26(5), 923–939, doi: 10.1007/s00376-009-8111-x.CrossRefGoogle Scholar
  8. Liu, Y., G. Wu, and R. Ren, 2004: Relationship between the subtropical anticyclone and diabatic heating. J. Climate, 17(4), 682–698.CrossRefGoogle Scholar
  9. Rayner, N., D. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), 4407, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  10. Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang and T. Zhou, 2012: The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 1–34, doi: 10.1007/s00382-012-1607-6.Google Scholar
  11. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106(D7), 7183–7192, doi: 10.1029/2000JD900719.CrossRefGoogle Scholar
  12. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi: Scholar
  13. Tian, S. F., and T. Yasunari, 1998: Climatological aspects and mechanism of spring persistent rains over central China. J. Meteor. Soc. Japan, 76, 57–71.Google Scholar
  14. Uppala, S. M., and Coauthors, 2005: The ERA40 reanalysis. Quart. J. Roy. Meteor. Soc., 131(612), 2961–3012, doi: 10.1256/qj.04.176.CrossRefGoogle Scholar
  15. Wan, R. J., and G. X. Wu, 2007: Mechanism of the spring persistent rains over southeastern China. Science in China (D), 50(1), 130–144, doi: 10.1007/s11430-007-2069-2.CrossRefGoogle Scholar
  16. Wan, R. J., and G. X. Wu, 2009: Temporal and spatial distributions of the spring persistent rains over southeastern China. Acta Meterologica Sinica, 23(5), 598–608. (in Chinese)Google Scholar
  17. Wan, R. J., B. K. Zhao, and G. X. Wu, 2009: New evidences on the climatic causes of the formation of the spring persistent rains over southeastern China. Adv. Atmos. Sci., 26(6), 1081–1087, doi: 10.1007/s00376-009-7202-z.CrossRefGoogle Scholar
  18. Wang, H. J., F. Xue, and G. Q. Zhou, 2002: The spring monsoon in south china and its relationship to Large-Scale circulation features. Adv. Atmos. Sci., 19(4), 651–664, doi: 10.1007/s00376-002-0005-0.CrossRefGoogle Scholar
  19. Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.CrossRefGoogle Scholar
  20. Xin, X. G., T. J. Zhou, and Z. X. Li, 2011: Regional climate simulation over eastern China in spring by a variable resolution AGCM. Acta Meteorologica Sinica, 69(4), 682–692. (in Chinese)Google Scholar
  21. Xue, Y., H. Juang, W. Li, S. Prince, R. DeFries, Y. Jiao, and R. Vasic, 2004: Role of land surface processes in monsoon development: East Asia and West Africa. J. Geophys. Res., 109, D03105, doi: 10.1029/2003JD003556.CrossRefGoogle Scholar
  22. Yanai, M., C. Li, and Z. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolu tion of the Asian summer monsoon. J. Meteor. Soc. Japan, 70(1), 319–350.Google Scholar
  23. Ye, D. Z., and G. X. Wu, 1998: The role of the heat source of the Tibetan Plateau in the general circulation. Meteor. Atmos. Phys., 67(1), 181–198.CrossRefGoogle Scholar
  24. Yu, R. C., W. Li, X. H. Zhang, Y. M. Liu, Y. Q. Yu, H. L. Liu, and T. J. Zhou, 2000: Climatic features related to eastern China summer rainfalls in the NCAR CCM3. Adv. Atmos. Sci., 17(4), 503–518, doi: 10.1007/s00376-000-0014-9.CrossRefGoogle Scholar
  25. Zhang, J., T. J. Zhou, R. C. Yu, and X. G. Xin, 2009: Atmospheric water vapor transport and corresponding typical anomalous spring rainfall patterns in China. Chinese J. Atmos. Sci., 33(1), 121–134. (in Chinese)Google Scholar
  26. Zhou, T. J., and R. C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, doi: 10.1029/2004JD005413.CrossRefGoogle Scholar
  27. Zhou, T., and L. Zou, 2010: Understanding the predictability of East Asian summer monsoon from the reproduction of land-sea thermal contrast change in AMIP-type simulation. J. Climate, 23(22), 6009–6026, doi: 10.1175/2010JCLI3546.1.CrossRefGoogle Scholar
  28. Zhou, T., B. Wu, and B. Wang, 2009: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon? J. Climate, 22(5), 1159–1173, doi: 10.1175/2008JCLI2245.1.CrossRefGoogle Scholar
  29. Zou, L., T. Zhou, L. Z.-X. Li, J. Zhang, 2010: East China summer rainfall variability of 1958–2000: Dynamical downscaling with a variable-resolution AGCM. J. Climate, 23, 6394–6408.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jie Zhang (张洁)
    • 1
    • 2
    • 3
  • Laurent Li
    • 2
    • 3
  • Tianjun Zhou (周天军)
    • 1
  • Xiaoge Xin (辛晓歌)
    • 3
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Laboratoire de Météorologie Dynamique/The Centre National de la Recherche ScientifiqueUniversité Paris 6ParisFrance
  3. 3.National Climate CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations