Advances in Atmospheric Sciences

, Volume 30, Issue 3, pp 790–795 | Cite as

Poleward expansion of the hadley circulation in CMIP5 simulations

  • Yongyun Hu (胡永云)Email author
  • Lijun Tao (陶利军)
  • Jiping Liu (刘骥平)


Observational analyses have demonstrated that the Hadley circulation has expanded poleward in recent decades. Important issues are what caused the widening of the Hadley circulation and whether the observed widening is related to anthropogenic forcing. In the present study, we use currently available simulations of the Coupled Model Intercomparison Project Phase-5 (CMIP5) to analyze changes in the width of the Hadley circulation. It is found that CMIP5 historical simulations with greenhouse gas (GHG) forcing generate a total widening of ∼0.15°±0.06° in latitude (10 yr)−1 for the period 1979–2005, and the widening in CMIP5 historical simulations with all forcings is ∼0.17° ± 0.06° per decade. Similar to that in CMIP3, the simulated poleward expansion in CMIP5 is much weaker than the observational reanalyses. In CMIP5 projection simulations for the 21st century, magnitudes of widening of the Hadley circulation increase with radiative forcing. For the extreme projected radiative forcing of RCP8.5, the total annual-mean widening of the Hadley circulation is ∼0.27° ± 0.04° (10 yr)−1 in the 21st century. Although CMIP5 underestimates observed poleward expansion of the Hadley circulation, the results of this study suggest that the observed trends in the width of the Hadley circulation are caused by anthropogenic forcing and that increasing GHGs play an important role in the observed poleward expansion of the Hadley circulation, in addition to other forcings emphasized in previous studies.

Key words

global warming Hadley circulation increasing greenhouse gases CMIP5 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R. J., S. C. Sherwood, J. R. Norris, and C. Zender, 2012: Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485, 350–355.CrossRefGoogle Scholar
  2. Chen, G., and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, doi: 10.1029/2007GL031200.Google Scholar
  3. Compo, G., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28.CrossRefGoogle Scholar
  4. Davis, S. M., and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J. Climate, 25, 1061–1078, doi: Scholar
  5. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.828.CrossRefGoogle Scholar
  6. Frierson, D. M. W., J. Lu, and G. Chen, 2007: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, doi: 10.1029/2007GL031115.Google Scholar
  7. Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmospheric Chemistry and Physics, 7, 5229–5236.CrossRefGoogle Scholar
  8. Hu, Y., C. Zhou, and J. P. Liu, 2011: Observational evidence for the poleward expansion of the Hadley circulation. Adv. Atmos. Sci., 28, 33–44, doi: 10.1007/s00376-010-0032-1.CrossRefGoogle Scholar
  9. Hudson, R. D., M. F. Andrade, M. B. Follette, and A. D. Frolov, 2006: The total ozone field separated into meteorological regimes-Part II: Northern Hemisphere mid-latitude total ozone trends. Atmospheric Chemistry and Physics, 6, 5183–5191.CrossRefGoogle Scholar
  10. Johanson, C. M., and Q. Fu, 2009: Hadley cell widening: Model simulations versus observations. J. Climate, 22, 2713–2725, doi: 10.1175/2008JCLI2620.1.CrossRefGoogle Scholar
  11. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  12. Kanamitsu, M., and Coauthors, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.CrossRefGoogle Scholar
  13. Kistler, R., and Coauthors, 2001: The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247–267.CrossRefGoogle Scholar
  14. Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi: 10.1029/2006GL028443.CrossRefGoogle Scholar
  15. Lu, J., C. Deser, and T. Reichler, 2009: Cause of the widening of the tropical belt since 1958. Geophys. Res. Lett., 36, L03803, doi: 10.1029/2008GL036076.CrossRefGoogle Scholar
  16. Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 1467–1485, doi: 10.1175/2009BAMS2778.1.CrossRefGoogle Scholar
  17. Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756.CrossRefGoogle Scholar
  18. Onogi, K., and Coauthors, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369–432.CrossRefGoogle Scholar
  19. Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of 20th century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795–812, doi: 10.1175/2010jcli3772.1.CrossRefGoogle Scholar
  20. Seidel, D. J., and W. J. Randel, 2008: Recent widening of the tropical belt: Evidence from tropopause observations. J. Geophys. Res., 112, D20113, doi: 10.1029/2007JD008861.CrossRefGoogle Scholar
  21. Son, S.-W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36, L15705, doi: 10.1029/2009GL038671.CrossRefGoogle Scholar
  22. Son, S.-W., and Coauthors, 2010: The impact of stratospheric ozone on the southern hemisphere circulation changes: A multimodel assessment. J. Geophys. Res., 115, D00M07, doi: 10.1029/2010JD014271.CrossRefGoogle Scholar
  23. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi: 10.1175/BAMS-D-11-00094.1.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yongyun Hu (胡永云)
    • 1
    Email author
  • Lijun Tao (陶利军)
    • 1
  • Jiping Liu (刘骥平)
    • 2
  1. 1.Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of PhysicsPeking UniversityBeijingChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations