Advances in Atmospheric Sciences

, Volume 30, Issue 5, pp 1387–1405 | Cite as

The impact of ecosystem functional type changes on the La Plata Basin climate

  • Seung-Jae Lee
  • E. Hugo Berbery
  • Domingo Alcaraz-Segura
Article

Abstract

In this paper, the effects of land cover changes on the climate of the La Plata Basin in southern South America are investigated using the Weather and Research Forecasting (WRF) Model configured on a 30/10-km two-way interactive nested grid. To assess the regional climate changes resulting from land surface changes, the standard land cover types are replaced by time-varying Ecosystem Functional Types (EFTs), which is a newly devised land-cover classification that characterizes the spatial and interannual variability of surface vegetation dynamics. These variations indicate that natural and anthropogenic activities have caused changes in the surface physical parameters of the basin, such as albedo and roughness length, that contributed to regional climate changes. EFTs are obtained from functional attributes of vegetation computed from properties of the Normalized Difference Vegetation Index (NDVI) to represent patches of the land surface with homogeneous energy and gas exchanges with the atmosphere. Four simulations are conducted, each experimental period ranging from September to November in two contrasting years, 1988 and 1998. The influence of an identical EFT change on the surface heat fluxes, 2-m temperature and humidity, 10-m winds, convective instabilities and large-scale moisture fluxes and precipitation are explored for 1988 (a dry year) and 1998 (a wet year). Results show that the surface and atmospheric climate has a larger response to the same EFT changes in a dry year for 2-m temperature and 10-m wind; the response is larger in a wet year for 2-m water vapor mixing ratio, convective available potential energy, vertically integrated moisture fluxes and surface precipitation. For EFTs with high productivity and a weak seasonal cycle, the nearsurface temperature during the spring of 1988 and 1998 increased by as much as 1°C in the central and western portions of La Plata Basin. Additionally, for higher productivity EFTs, precipitation differences were generally positive in both dry and wet years, although the patterns are not uniform and exhibit certain patchiness with drier conditions.

Key words

EFT ecosystem function land cover La Plata Basin model simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcaraz-Segura, D., E. H. Berbery, S.-J. Lee, and J. Paruelo, 2011: Use of ecosystem functional types to represent the interannual variability of vegetation biophysical properties in regional models. CLIVAR Exchanges, 16, International CLIVAR Project Office, Southampton, United Kingdom, 23–27.Google Scholar
  2. Alcaraz-Segura, D., J. Paruelo, H. E. Epstein, and J. Cabello, 2013: Environmental and human controls of ecosystem functional diversity in temperate South America. Remote Sensing, 5, 127–154.CrossRefGoogle Scholar
  3. Barlow, M., S. Nigam, and E. H. Berbery, 1998: Evolution of the North American monsoon system. J. Climate, 11, 2238–2257.CrossRefGoogle Scholar
  4. Beltrán-Przekurat, A., R. A. Pielke Sr., J. L. Eastman, and M. B. Coughenour, 2012: Modeling the effects of land-use/land-cover changes on the near-surface atmosphere in southern South America. Inter. J. Climatol., 30, 1206–1225.CrossRefGoogle Scholar
  5. Belward, A. S., J. E. Estes, and K. D. Kline, 1999: The IGBP-DIS global 1-km land-cover data set DIS-Cover: A project overview. Photogrammetric Engineering and Remote Sensing, 65, 1013–1020.Google Scholar
  6. Berbery, E. H., and E. A. Collini, 2000: Springtime precipitation and water vapor flux over southeastern South America. Mon. Wea. Rev., 128, 1328–1346.CrossRefGoogle Scholar
  7. Black, T. L., 1994: The new NMC mesoscale Eta model: Description and forecast experiments. Wea. Forecasting, 9, 266–278.CrossRefGoogle Scholar
  8. Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Vol 2, Oxford University Press, 594pp.Google Scholar
  9. Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111, D12106, doi: 10.1029/2005JD006548CrossRefGoogle Scholar
  10. Cha, D.-H., D.-K. Lee, and Y.-H. Kuo, 2006: An implementation of spectral nudging technique to the WRF Model. 7th Annual WRF User’s Workshop, Boulder, Colorado, University Corporation for Atmospheric Research, 4pp.Google Scholar
  11. Champeaus, J. L., V. Masson, and F. Chauvin, 2005: ECOCLIMAP: A global database of land surface parameters at 1 km resolution. Meteorological Applications, 12, 29–32.CrossRefGoogle Scholar
  12. Chen, F., and J. Dudhia, 2001: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–585.CrossRefGoogle Scholar
  13. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.CrossRefGoogle Scholar
  14. Ge, J., J. Qi, and B. Lofgren, 2008: Use of vegetation properties from EOS observations for land-climate modeling in East Africa. J. Geophys. Res., 113, D15101, doi: 10.1029/2007JD009628.CrossRefGoogle Scholar
  15. Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-3981STR, 121pp.Google Scholar
  16. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.Google Scholar
  17. Janjić, Z. I., 1990: The step-Mountain coordinate: Physical package. Mon. Wea. Rev., 118, 1429–1443.CrossRefGoogle Scholar
  18. Janjić, Z. I., 1994: The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945.CrossRefGoogle Scholar
  19. Janjić, Z. I., 1996: The surface layer in the NCEP Eta Model. Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, USA, 354–355.Google Scholar
  20. Janjić, Z. I., 2000: Comments on “Development and Evaluation of a Convection Scheme for Use in Climate Models”. J. Atmos. Sci., 57, 3686.CrossRefGoogle Scholar
  21. Janjić, Z. I., 2002: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note, No. 437, 61pp.Google Scholar
  22. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  23. Kurkowski, N. P., D. J. Stensrud, and M. E. Baldwin, 2003: Assessment of implementing satellite-derived land cover data in the Eta model. Wea. Forecasting, 18, 404–416.CrossRefGoogle Scholar
  24. Lee, S.-J., 2010: Impact of land surface vegetation change over the La Plata Basin on the regional climatic environment: A study using conventional landcover/land-use and newly developed ecosystem functional types. Ph. D. dissertation, University of Maryland, 153pp.Google Scholar
  25. Lee, S.-J., and E. H. Berbery, 2012: Land cover change effects on the climate of the La Plata Basin. J. Hydrometeorology, 13, 84–102.CrossRefGoogle Scholar
  26. Lee, S.-J., E. H. Berbery, and D. Alcaraz-Segura, 2013: Effect of implementing ecosystem functional type data in a mesoscale climate model. Adv. Atmos. Sci., 30(5), doi: 10.1007/s00376-012-2143-3Google Scholar
  27. Loveland, T. R., and A. S. Belward, 1997: The IGBP-DIS global 1-km land cover data set, DISCover: First results. International Journal of Remote Sensing, 18, 3291–3295.CrossRefGoogle Scholar
  28. Marshall, C. H., and R. A. Pielke Sr., L. T. Steyaert, and D. A Willard, 2004: The impact of anthropogenic land-cover change on the Florida Peninsula sea breezes and warm season sensible weather. J. Climate, 132, 28–52.Google Scholar
  29. McAlpine, C. A., J. Syktus, R. C. Deo, P. J. Lawrence, H. A. McGowan, I. G. Watterson, and S. R. Phinn, 2007: Modeling the impact of historical land cover change on Australia’s regional climate. Geophys. Res. Lett., 34, L22711, doi: 10.1029/2007GL031524.CrossRefGoogle Scholar
  30. Mechoso, C. R., and Coauthors, 2001: Climatology and hydrology of the Plata Basin. VAMOS/CLIVAR document, 55pp.Google Scholar
  31. Menéndez, C. G., and Coauthors, 2010: Downscaling extreme month-long anomalies in southern South America. Climatic Change, 98, 379–403.CrossRefGoogle Scholar
  32. Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2005: Regional climate simulations over North America: Interaction of local processes with improved large-scale flow. J. Climate, 18, 1227–1246.CrossRefGoogle Scholar
  33. Misra, V., P. A. Dirmeyer, B. P. Kirtman, H.-M. Juang, M. Kanamitsu, 2002: Regional simulation of interannual variability over South America. J. Geophys. Res., 107, D20, doi: 10.1029/2001JD900216.Google Scholar
  34. Mitchell, T., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25, 693–712, doi: 10.1002/joc.1181.CrossRefGoogle Scholar
  35. Narisma, G. T., and A. J. Pitman, 2003: The impact of 200 years of land cover change on the Australian near-surface climate. J. Hydrometeorology, 4, 424–436.CrossRefGoogle Scholar
  36. Oleson, K.W., K. L. Driese, J. A. Maslanik, W. J. Emery, and W. A. Reiners, 1997: The sensitivity of a land surface parameterization scheme to the choice of remotely sensed land-cover datasets. Mon. Wea. Rev., 125, 1537–1555.CrossRefGoogle Scholar
  37. Paruelo, J. M., E. G. Jobbágy, and O. E. Sala, 2001: Current distribution of ecosystem functional types in temperate South America. Ecosystem, 4, 683–698.CrossRefGoogle Scholar
  38. Pongratz, J., L. Bounoua, R. S. DeFries, D. C. Morton, L. O. Anderson, W. Mauser, and C. A. Klink, 2006: The impact of land cover change on surface energy and water balance in Mato Grosso, Brazil. Earth Interaction, 10, 1–17.CrossRefGoogle Scholar
  39. Pielke, R. A., and Coauthers, 1992: A comprehensive meteorological modeling system — RAMS. Meteor. Atmos. Phys., 49, 69–91.CrossRefGoogle Scholar
  40. Scepan, J., 1999: Thematic validation of high-resolution gloabal land-cover data sets. Photogrammetric Engineering and Remote Sensing, 65, 1051–1060.Google Scholar
  41. Seth, A., and M. Rojas, 2003: Simulation and sensitivity in a nested modeling system for South America. Part I: Reanalyses Boundary Forcing. J. Climate, 16, 2437–2453.CrossRefGoogle Scholar
  42. Shi, W., R. W. Higgins, E. Yarosh, and V. E. Kousky, 2000: The annual cycle and variability of precipitation in Brazil. NCEP/Climate Prediction Center Atlas 9, 25 pp. [Available online from http://www.cpc.ncep.noaa.gov/researchpapers/ncepcpcatlas/9/index.html, and from the Climate Prediction Center, World Weather Building, Room 605, Camp Springs, MD 20746.]Google Scholar
  43. Silva, V. B. S., V. E. Kousky, W. Shi, and R. W. Higgins, 2007: An improved gridded historical daily precipitation analysis for Brazil. Journal of Hydrometeorology, 8, 847–861.CrossRefGoogle Scholar
  44. Solman, S. A., M. N. Núñez, M. F. Cabré, 2008: Regional climate change experiments over southern South America. I: Present climate. Climate Dyn., 30, 533–552.CrossRefGoogle Scholar
  45. Tucci, C. E. M., and R. T. Clarke, 1998: Environmental issues in the La Plata Basin. Water Resources Development, 14, 157–174.CrossRefGoogle Scholar
  46. Yucel, I., 2006: Effects of implementing MODIS land cover and albedo in MM5 at two constrasting U.S. Regions. Journal of Hydrometeorology, 7, 1043–1060.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Seung-Jae Lee
    • 1
  • E. Hugo Berbery
    • 1
  • Domingo Alcaraz-Segura
    • 2
  1. 1.Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkUSA
  2. 2.Department of BotanyUniversity of GranadaGranadaSpain

Personalised recommendations