Advances in Atmospheric Sciences

, Volume 30, Issue 5, pp 1373–1386 | Cite as

Effect of implementing ecosystem functional type data in a mesoscale climate model

  • Seung-Jae Lee
  • E. Hugo Berbery
  • Domingo Alcaraz-Segura
Article

Abstract

In this paper, we introduce a new concept of land-surface state representation for southern South America, which is based on “functional” attributes of vegetation, and implement a new land-cover (Ecosystem Functional Type, hereafter EFT) dataset in the Weather and Research Forecasting (WRF) model. We found that the EFT data enabled us to deal with functional attributes of vegetation and time-variant features more easily than the default land-cover data in the WRF. In order to explore the usefulness of the EFT data in simulations of surface and atmospheric variables, numerical simulations of the WRF model, using both the US Geological Survey (USGS) and the EFT data, were conducted over the La Plata Basin in South America for the austral spring of 1998 and compared with observations. Results showed that the model simulations were sensitive to the lower boundary conditions and that the use of the EFT data improved the climate simulation of 2-m temperature and precipitation, implying the need for this type of information to be included in numerical climate models.

Key words

Ecosystem Functional Type WRF land cover climate simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcaraz-Segura, D., J. M. Paruelo, H. E. Epstein, and J. Cabello, 2013: Environmental and human controls of ecosystem functional diversity in temperate South America. Remote Sensing, 5, 127–154.CrossRefGoogle Scholar
  2. Anderson, J. R., E. E. Hardy, J. T. Roach, and R. E. Witmer, 1976: A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey Professional Paper 964, 28pp.Google Scholar
  3. Barlow, M., S. Nigam, and E. H. Berbery, 1998: Evolution of the North American monsoon system. J. Climate, 11, 2238–2257.CrossRefGoogle Scholar
  4. Berbery, E. H., and V. R. Barros, 2002: The hydrologic cycle of the La Plata basin in South America. J. Hydrometeorology, 3, 630–645.CrossRefGoogle Scholar
  5. Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. 2, Oxford University Press, 594pp.Google Scholar
  6. Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111, D12106, doi: 10.1029/2005JD006548.CrossRefGoogle Scholar
  7. Chen, F., and J. Dudhia, 2001: Coupling an advanced land-surface/ hydrology model with the Penn State/ NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–585.CrossRefGoogle Scholar
  8. Collini, E. A, E. H. Berbery, V. R. Barros, and M. E. Pyle, 2008: How does soil moisture influence the early stages of the South American monsoon? J. Climate, 21, 195–213.CrossRefGoogle Scholar
  9. Doyle, M. E., and V. R. Barros, 2002: Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic. J. Climate, 15, 3394–3410.CrossRefGoogle Scholar
  10. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.CrossRefGoogle Scholar
  11. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF singlemoment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.Google Scholar
  12. Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 1429–1443.CrossRefGoogle Scholar
  13. Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945.CrossRefGoogle Scholar
  14. Janjić, Z. I., 1996: The surface layer in the NCEP Eta Model. Preprints, Eleventh Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.Google Scholar
  15. Janjić, Z. I., 2000: Comments on “Development and evaluation of a convection scheme for use in climate models”. J. Atmos. Sci., 57, 3686.CrossRefGoogle Scholar
  16. Janjić, Z. I., 2002: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note, No. 437, 61 pp.Google Scholar
  17. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  18. Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809–817.CrossRefGoogle Scholar
  19. Kurkowski, N. P., D. J. Stensrud, and M. E. Baldwin, 2003: Assessment of implementing satellite-derived land cover data in the Eta model. Wea. Forecasting, 18, 404–416.CrossRefGoogle Scholar
  20. Labraga, J. C., O. Frumento, and M. Lopez, 2000: The atmospheric water vapor cycle in South America and the tropospheric circulation. J. Climate, 13, 1899–1915.CrossRefGoogle Scholar
  21. Lee, S.-J., 2010: Impact of land surface vegetation change over the La Plata Basin on the regional climatic environment: A study using conventional landcover/ land-use and newly developed ecosystem functional types. Ph.D. dissertation, University of Maryland, 153pp.Google Scholar
  22. Lee, S.-J., and E. H. Berbery, 2012: The impact of landuse and land-cover changes on the climate of the La Plata Basin. J. Hydrometeorology, 13, 84–102.CrossRefGoogle Scholar
  23. Loveland, T. R., and A. S. Belward, 1997: The IGBP-DIS global 1-km land cover data set, DISCover: First results. Int. J. Remote Sens., 18, 3291–3295.CrossRefGoogle Scholar
  24. Marengo, J. A., W. R. Soares, C. Saulo, and M. Nicolini, 2004: Climatology of the low-level jet east of the Andes as derived from the NCEP-NCAR reanalyses: Characteristics and temporal variability. J. Climate, 17, 2261–2280.CrossRefGoogle Scholar
  25. Michalakes, J., S. Chen, J. Dudhia, L. Hart, J. Klemp, J. Middlecoff, and W. Skamarock, 2001: Development of a Next Generation Regional Weather Research and Forecast Model. Developments in Teracomputing: Proc. the Ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology, W. Zwieflhofer and N. Kreitz, Eds., World Scientific, 269–276.CrossRefGoogle Scholar
  26. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14), 16663–16682.CrossRefGoogle Scholar
  27. Paruelo, J. M., E. G. Jobbagy, and O. E. Sala, 2001: Current distribution of ecosystem functional types in temperate South America. Ecosystems, 4, 683–698.CrossRefGoogle Scholar
  28. Yucel, I., 2006: Effects of implementing MODIS land cover and albedo in MM5 at two constrasting U.S. Regions. J. Hydrometeorology, 7, 1043–1060.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Seung-Jae Lee
    • 1
  • E. Hugo Berbery
    • 2
  • Domingo Alcaraz-Segura
    • 3
  1. 1.Complex Systems Science Laboratory, Department of Landscape Architecture and Rural Systems EngineeringSeoul National UniversitySeoulKorea
  2. 2.Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkUSA
  3. 3.Department of BotanyUniversity of GranadaGranadaSpain

Personalised recommendations