Advances in Atmospheric Sciences

, Volume 30, Issue 3, pp 543–560 | Cite as

The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2

  • Lijuan Li (李立娟)
  • Pengfei Lin (林鹏飞)
  • Yongqiang Yu (俞永强)
  • Bin Wang (王 斌)
  • Tianjun Zhou (周天军)
  • Li Liu (刘 利)
  • Jiping Liu (刘骥平)
  • Qing Bao (包 庆)
  • Shiming Xu (徐世明)
  • Wenyu Huang (黄文誉)
  • Kun Xia (夏 坤)
  • Ye Pu (普 业)
  • Li Dong (董 理)
  • Si Shen (申 思)
  • Yimin Liu (刘屹岷)
  • Ning Hu (胡 宁)
  • Mimi Liu (刘咪咪)
  • Wenqi Sun (孙文奇)
  • Xiangjun Shi (史湘军)
  • Weipeng Zheng (郑伟鹏)
  • Bo Wu (吴 波)
  • Mirong Song (宋米荣)
  • Hailong Liu (刘海龙)
  • Xuehong Zhang (张学洪)
  • Guoxiong Wu (吴国雄)
  • Wei Xue (薛 巍)
  • Xiaomeng Huang (黄小猛)
  • Guangwen Yang (杨广文)
  • Zhenya Song (宋振亚)
  • Fangli Qiao (乔方利)
Article

Abstract

This study mainly introduces the development of the Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2 (FGOALS-g2) and the preliminary evaluations of its performances based on results from the pre-industrial control run and four members of historical runs according to the fifth phase of the Coupled Model Intercomparison Project (CMIP5) experiment design. The results suggest that many obvious improvements have been achieved by the FGOALS-g2 compared with the previous version,FGOALS-g1, including its climatological mean states, climate variability, and 20th century surface temperature evolution. For example,FGOALS-g2 better simulates the frequency of tropical land precipitation, East Asian Monsoon precipitation and its seasonal cycle, MJO and ENSO, which are closely related to the updated cumulus parameterization scheme, as well as the alleviation of uncertainties in some key parameters in shallow and deep convection schemes, cloud fraction, cloud macro/microphysical processes and the boundary layer scheme in its atmospheric model. The annual cycle of sea surface temperature along the equator in the Pacific is significantly improved in the new version. The sea ice salinity simulation is one of the unique characteristics of FGOALS-g2, although it is somehow inconsistent with empirical observations in the Antarctic.

Key words

FGOALS-g2 climatological mean state climate variability 20th century climate monsoon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92(8), 1023–1043.CrossRefGoogle Scholar
  2. Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi: 10.1029/2005JD006548.CrossRefGoogle Scholar
  3. Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2001: Ocean turbulence. Part I: Onepoint closure model-Momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31, 1413–1426.CrossRefGoogle Scholar
  4. Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2002: Ocean turbulence. Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J. Phys. Oceanogr., 32, 240–264.CrossRefGoogle Scholar
  5. Capotondi, A., A. Wittenberg, and S. Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in 20th century climate simulations. Ocean Modelling, 15, 274–298.CrossRefGoogle Scholar
  6. Cionni, I., and Coauthors, 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys., 11, 11267–11292, doi: 10.5194/acp-11-11267-2011.CrossRefGoogle Scholar
  7. Collins, W. D., and Coauthors, 2003: Description of the NCAR community atmospheric model (CAM2). NCAR, Boulder, 190pp.Google Scholar
  8. Craig, A. P., R. L. Jacob, B. Kauffman, T. Bettge, J. Larson, E. Ong, C. Ding, and Y. He, 2005: Cpl6: The new extensible, high-performance parallel coupler for the community climate system model. In ternational Journal of High Performance Computing Applications, 19, 309–327.CrossRefGoogle Scholar
  9. Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935–937.CrossRefGoogle Scholar
  10. Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in community climate system model version 4. J. Climate, 25, 2622–2651.CrossRefGoogle Scholar
  11. Dong, L., L. J. Li, and W. Y. Huang, Y. Wang, and B. Wang, 2012: Preliminary evaluation of the cloud fraction simulations by GAMIL2 using COSP. Atmos. Oceanic Sci. Lett., 5, 258–263.Google Scholar
  12. Gent, P. R., and Coauthors, 2011: The community climate system model version 4. J. Climate, 24, 4973–4991.CrossRefGoogle Scholar
  13. Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J. Climate, 21, 5145–5153, doi: http://dx.doi.org/10.1175/2008JCLI2292.1.CrossRefGoogle Scholar
  14. Latif, M., and Coauthors, 2001: ENSIP: The El Niño simulation intercomparison project. Climate Dyn., 18, 255–276.CrossRefGoogle Scholar
  15. Lean, J., cited 2009: Calculations of solar irradiance: monthly means from 1882 to 2008, annual means from 1610 to 2008. [Available online at http://sparcsolaris.gfzpotsdam.de/Inputdata/CalculationsofSolarIrradiance.pdf.]Google Scholar
  16. Li, L. J., and B. Wang, 2010: Influences of two convective schemes on the radiative energy budget in GAMIL1.0. Acta Meteorologica Sinica, 24(3), 318–327.Google Scholar
  17. Li, L. J., B. Wang, and T. J. Zhou, 2007a: Contributions of natural and anthropogenic forcings to the summer cooling over eastern China: An AGCM study. Geophys. Res. Lett., 34, L18807, doi: 10.1029/2007GL030541.CrossRefGoogle Scholar
  18. Li, L. J., B. Wang, Y. Q. Wang, and H. Wan, 2007b: Improvements in climate simulation with modifi-cations to the Tiedtke convective parameterization in the grid-point atmospheric model of IAP LASG (GAMIL). Adv. Atmos. Sci., 24, 323–335, doi: 10.1007/s00376-007-0323-3.CrossRefGoogle Scholar
  19. Li, L. J., X. Xie, B. Wang, and L. Dong, 2012: Evaluating the performances of GAMIL1.0 and GAMIL2.0 during TWP-ICE with CAPT. Atmos. Oceanic Sci. Lett., 5, 38–42.Google Scholar
  20. Li, L. J., and Coauthors, 2013: Evaluation of gridpoint atmospheric model of IAP LASG, version 2.0 (GAMIL 2.0). Adv. Atmos. Sci., doi: 10.1007/s00376-013-2157-5.Google Scholar
  21. Lin, J., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Climate, 20, 4497–4525.CrossRefGoogle Scholar
  22. Lin, P. F., H. L. Liu, and X. H. Zhang, 2007: Sensitivity of the upper ocean temperature and circulation in the equatorial Pacific to solar radiation penetration due to phytoplankton. Adv. Atmos. Sci., 24, 765–780, doi: 10.1007/s00376-007-0765-7.CrossRefGoogle Scholar
  23. Lin, P. F., H. L. Liu, Y. Q. Yu, and X. H. Zhang, 2011: Response of sea surface temperature to chlorophyll-a concentration in the tropical Pacific: Annual mean, seasonal cycle and interannual variability. Adv. Atmos. Sci., 28(3), 492–510, doi: 10.1007/s00376-010-0015-2.CrossRefGoogle Scholar
  24. Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013a: Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2. Adv. Atmos. Sci., doi: 10.1007/s00376-012-2042-7.Google Scholar
  25. Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013b: Oceanic climatology in the coupled model FGOALS-g2: Improvements and biases, Adv. Atmos. Sci., doi: 10.1007/s00376-012-2137-1.Google Scholar
  26. Lin, P. F., H. L. Liu, Y. Q. Yu, and T. Z. Zhou, 2013c: Long-term behaviors of two versions of FGOALS. Adv. Atmos. Sci., doi: 10.10071/s00376-013-2186-0.Google Scholar
  27. Liu, H. L., X. H. Zhang, W. Li, Y. Q. Yu, and R. C. Yu, 2004a: A eddy-permitting oceanic general circulation model and its preliminary evaluations. Adv. Atmos. Sci., 21, 675–690.CrossRefGoogle Scholar
  28. Liu, H. L., Y. Q. Yu, W. Li, and X. H. Zhang, 2004b: Manual for LASG/IAP Climate System Ocean Model (LICOM1.0). Science Press, Beijing, 1–128. (in Chinese)Google Scholar
  29. Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2.0. Acta Meteorologica Sinica, 26, 318–329.CrossRefGoogle Scholar
  30. Liu, J., 2010: Sensitivity of sea ice and ocean simulations to sea ice salinity in a coupled global climate model. Science in China (D), 53(6), 911–916.CrossRefGoogle Scholar
  31. Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 2550–2562.CrossRefGoogle Scholar
  32. IPCC, 2007a: Global climate projections. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, New York, USA, 772–774.Google Scholar
  33. IPCC, 2007b: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, New York, USA, 235–336.Google Scholar
  34. Maloney, E. D., and D. L. Hartmann, 2001: The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14, 2015–2034.CrossRefGoogle Scholar
  35. Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Mon. Wea. Rev., 123, 2825–2838.CrossRefGoogle Scholar
  36. Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21(15), 3642–3659.CrossRefGoogle Scholar
  37. Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the community land model (CLM), NCAR Tech. Note NCAR/TN-478+STR, 1–257.Google Scholar
  38. Rasch, P. J., and J. E. Kristjánsson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11(7), 1587–1614.CrossRefGoogle Scholar
  39. Rasmusson, E., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384.CrossRefGoogle Scholar
  40. Schneider, B., M. Latif, and A. Schmittner, 2007: Evaluation of different methods to assess model projections of the future evolution of the Atlantic meridional overturning circulation. J. Climate, 20, 2121–2132.CrossRefGoogle Scholar
  41. Shi, X. J., B. Wang, and X. H. Liu, M. H. Wang, L. J. Li, and L. Dong, 2010: Aerosol indirect effects on warm clouds in the grid-point atmospheric model of IAP LASG (GAMIL). Atmos. Oceanic Sci. Lett., 3, 237–241.Google Scholar
  42. Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113, 899–927.CrossRefGoogle Scholar
  43. Syed, T. H., J. S. Famiglietti, M. Rodell, J. Chen, and C. R. Wilson, 2008: Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res., 44, W02433, doi: 10.1029/2006WR005779.CrossRefGoogle Scholar
  44. Taylor, K. E., R. J. Stouffer and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. [available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/TaylorCMIP5design.pdf]Google Scholar
  45. Thompson, D. W. J., J. J. Kennedy, J. M. Wallace, and P. D. Jones, 2008: A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature, 453, 646–649, doi: 10.1038.CrossRefGoogle Scholar
  46. Waliser, D. and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 3006–3030.CrossRefGoogle Scholar
  47. Wang, B., H. Wan, Z. Z. Ji, X. Zhang, R. C. Yu, Y. Q. Yu, and H. L. Liu, 2004: Design of a new dynamical core for global atmospheric models based on some ef-ficient numerical methods. Science in China (A), 47, 4–21.CrossRefGoogle Scholar
  48. Wang, B., T. J. Zhou, Y. Q. Yu and B. Wang, 2009a: A review on earth system model development. Acta Meteorologica Sinica, 23(1), 1–17.Google Scholar
  49. Wang, X. C., J. P. Liu, Y. Q. Yu, H. L. Liu, and L. J. Li, 2009b: Numerical simulation of polar climate with FGOALS-g1.1. Acta Meteorologica Sinica, 67, 961–972. (in Chinese)Google Scholar
  50. Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932.CrossRefGoogle Scholar
  51. Wilcox, E. M., and L. J. Donner, 2007: The frequency of extreme rain events in satellite observations and an atmospheric circulation model. J. Climate, 20, 53–69.CrossRefGoogle Scholar
  52. Willmott, C. J., and K. Matsuura, 2001. Terrestrial air temperature and precipitation: Monthly and annual time series (1950-1999) Version 1.02. [Available online at http://climate.geog.udel.edu/~climate/htmlpages/download.html.]Google Scholar
  53. Wu, F., H. Liu, W. Li, and X. Zhang, 2005: Effect of adjusting vertical resolution on the eastern equatorial Pacific cold tongue. Acta. Meteorologica Sinica, 24, 1–12.Google Scholar
  54. Xia, K., B. Wang, L. J. Li, S. Shen, W. Y. Huang, S. M. Xu, L. Dong, and L. Liu, 2013: Evaluation of snow covers by two versions of the flexible global ocean-atmosphere-land system model. Adv. Atmos. Sci., submitted.Google Scholar
  55. Xiao, C., 2006: Adoption of a two-step shape-preserving advection scheme in an OGCM and its coupled experiment. M.S. thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, 89pp. (in Chinese)Google Scholar
  56. Xie, X., B. Wang, L. J. Li, and L. Dong, 2012: MJO simulations by GAMIL1.0 and GAMIL2.0. Atmos. Oceanic Sci. Lett., 5, 48–54.Google Scholar
  57. Xin, X. G., T. J. Zhou, and R. C. Yu, 2008: The Arctic oscillation in coupled climate models. Chinese Journal of Geophysics, 51(2), 337–351. (in Chinese with English abstract)Google Scholar
  58. Xu, K. M., and S. K. Krueger, 1991: Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon. Wea. Rev., 119, 342–367.CrossRefGoogle Scholar
  59. Yu, J.-Y., C. R. Mechoso, J. C. McWilliams, and A. Arakawa, 2002: Impacts of the Indian Ocean on the ENSO cycle. Geophys. Res. Lett., 29(8), 1204, doi: 10.1029/2001GL014098.CrossRefGoogle Scholar
  60. Yu, R. C., 1994: A two-step shape-preserving advection scheme. Adv. Atmos. Sci., 11, 79–90.CrossRefGoogle Scholar
  61. Yu, R. C., and T. J. Zhou, 2004, Impacts of winter-NAO on March cooling trends over subtropical Eurasia continent in the recent half century. Geophys. Res. Lett., 31, L12204, doi: 10.1029/2004GL019814.CrossRefGoogle Scholar
  62. Yu, Y., R. Yu, X. Zhang, and H. Liu, 2002: A flexible global coupled climate model. Adv. Atmos. Sci., 19, 169–190.CrossRefGoogle Scholar
  63. Yu, Y., and Coauthors, 2008: Coupled model simulations of climate changes in the 20th century and beyond. Adv. Atmos. Sci., 25(4), 641–654, doi: 10.1007/s00376-008-0641-0.CrossRefGoogle Scholar
  64. Yu, Y., W. Zheng, B. Wang, H. Liu, and J. Liu, 2011: Versions g1.0 and g1.1 of the LASG/IAP flexible global ocean-atmosphere-land system model. Adv. Atmos. Sci., 28(1), 99–117, doi: 10.1007/s00376-010-9112-5.CrossRefGoogle Scholar
  65. Zeng, G., W. C. Wang, and C. M. Shen, 2012: Association of the rainy season precipitation with low-level meridional wind in the Yangtze River valley and North China. J. Climate, 25(2), 792–799.CrossRefGoogle Scholar
  66. Zhang, G. J., and M. Mu, 2005a: Effects of modifications to the Zhang-McFarlane convection parameterization on the simulation of the tropical precipitation in the national center for atmospheric research community climate model. version 3. J. Geophys. Res., 110, D09109, doi: 10.1029/2004JD005617.CrossRefGoogle Scholar
  67. Zhang, G. J., and M. Mu, 2005b: Simulation of the Madden-Julian oscillation in the NCAR CCM3 using a revised Zhang-McFarlane convection parameterization scheme. J. Climate, 18, 4049–4067.Google Scholar
  68. Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.-Ocean, 33, 407–446.CrossRefGoogle Scholar
  69. Zhang, X., and X. Liang, 1989: A numerical world ocean general circulation model. Adv. Atmos. Sci., 6, 43–61.Google Scholar
  70. Zhang, X., G. Shi, H. Liu, and Y. Q. Yu, 2000: IAP Global Ocean-Atmosphere-Land System Model. Science Press, Beijing, 252pp.Google Scholar
  71. Zhou, T. J., X. H. Zhang, R. C. Yu, Y. Q. Yu, and S. W. Wang, 2000: The North Atlantic Oscillation simulated by version 2 and 4 of IAP/LASG GOALS model. Adv. Atmos. Sci., 17(4), 601–616.CrossRefGoogle Scholar
  72. Zhou, T. J., and Coauthors, 2005: The climate system model FGOALS s using LASG/IAP spectral AGCM SAMIL as its atmospheric component. Acta. Meteorologica Sinica, 63(5), 702–715. (in Chinese)Google Scholar
  73. Zhou, T. J., Y. Yu, H. Liu, W. LI, X. You, and G. Zhou, 2007: Progress in the development and application of climate ocean models and ocean-atmosphere coupled models in China. Adv. Atmos. Sci., 24(6), 1109–1120, doi: 10.1007/s00376-007-1109-3.CrossRefGoogle Scholar
  74. Zhou, T. J., B. Wu, X. Y. Wen, L. J. Li, and B. WANG, 2008: A fast version of LASG/IAP climate system model and its 1000-year control integration. Adv. Atmos. Sci., 25(4), 655–672, doi: 10.1007/s00376-008-0655-7.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lijuan Li (李立娟)
    • 1
  • Pengfei Lin (林鹏飞)
    • 1
  • Yongqiang Yu (俞永强)
    • 1
  • Bin Wang (王 斌)
    • 1
    • 2
  • Tianjun Zhou (周天军)
    • 1
  • Li Liu (刘 利)
    • 2
  • Jiping Liu (刘骥平)
    • 1
  • Qing Bao (包 庆)
    • 1
  • Shiming Xu (徐世明)
    • 2
  • Wenyu Huang (黄文誉)
    • 2
  • Kun Xia (夏 坤)
    • 2
  • Ye Pu (普 业)
    • 1
  • Li Dong (董 理)
    • 1
  • Si Shen (申 思)
    • 1
  • Yimin Liu (刘屹岷)
    • 1
  • Ning Hu (胡 宁)
    • 1
  • Mimi Liu (刘咪咪)
    • 1
  • Wenqi Sun (孙文奇)
    • 1
  • Xiangjun Shi (史湘军)
    • 4
  • Weipeng Zheng (郑伟鹏)
    • 1
  • Bo Wu (吴 波)
    • 1
  • Mirong Song (宋米荣)
    • 1
  • Hailong Liu (刘海龙)
    • 1
  • Xuehong Zhang (张学洪)
    • 1
  • Guoxiong Wu (吴国雄)
    • 1
  • Wei Xue (薛 巍)
    • 2
  • Xiaomeng Huang (黄小猛)
    • 2
  • Guangwen Yang (杨广文)
    • 2
  • Zhenya Song (宋振亚)
    • 3
  • Fangli Qiao (乔方利)
    • 3
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Ministry of Education Key Laboratory for Earth System Modeling, Center of Earth System ScienceTsinghua UniversityBeijingChina
  3. 3.First Institute of OceanographyState Oceanic AdministrationQingdaoChina
  4. 4.Climate Center, Hebei Meteorological AdministrationShijiazhuangChina

Personalised recommendations