Advances in Atmospheric Sciences

, Volume 30, Issue 1, pp 29–40 | Cite as

Intraseasonal oscillation in global ocean temperature inferred from Argo



The intraseasonal oscillation (ISO; 14–97-day periods) of temperature in the upper 2000 m of the global ocean was studied based on Argo observations from 2003–2008. It is shown that near the surface the ISO existed mainly in a band east of 60°E, between 10°S and 10°N, and the region around the Antarctic Circumpolar Current (ACC). At other levels analyzed, the ISOs also existed in the regions of the Kuroshio, the Gulf Stream, the Indonesian throughflow, the Somalia current, and the subtropical countercurrent (STCC) of the North Pacific. The intraseasonal signals can be seen even at depths of about 2000 m in some regions of the global ocean. The largest amplitude of ISO appeared at the thermocline of the equatorial Pacific, Atlantic and Indian Ocean, with maximum standard deviation (STD) exceeding 1.2°C. The ACC, the Kuroshio, and the Gulf Stream regions all exhibited large STD for all levels analyzed. Especially at 1000 m, the largest STD appeared in the south and southeast of South Africa-a part of the ACC, with a maximum value that reached 0.5°C. The ratios of the intraseasonal temperature variance to the total variance at 1000 m and at the equator indicated that, in a considerable part of the global deep ocean, the ISO was dominant in the variations of temperature, since such a ratio exceeded even 50% there. A case study also confirmed the existence of the ISO in the deep ocean. These results provide useful information for the design of field observations in the global ocean. Analysis and discussion are also given for the mechanism of the ISO.

Key words

temperature global ocean intraseasonal oscillation Argo 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Argo Science Team, 2000: Report of the Argo Science Team 2nd Meeting. The Argo Science Team 2nd Meeting, Southampton Oceanography Centre, Southampton, U.K., 1–18.Google Scholar
  2. Bhaskar, T. V. S. U., D. Swain, and M. Ravichandran, 2006: Inferring mixed-layer depth variability from Argo observations in the western Indian Ocean. J. Mar. Res., 64(3), 393–406.CrossRefGoogle Scholar
  3. Bhat, G. S., and Coauthors, 2001: BOBMEX: The Bay of Bengal Monsoon Experiment. Bull. Amer. Meteor. Soc., 82, 2217–2243.CrossRefGoogle Scholar
  4. Brandt, P., M. Dengler, A. Rubino, D. Quadfasel, and F. Schott, 2003: Intraseasonal variability in the southwestern Arabian Sea and its relation to the seasonal circulation. Deep-Sea Res. Part II: Topical Studies in Oceaonography, 50, 2129–2141.CrossRefGoogle Scholar
  5. Cai, W., A. Pan, D. Roemmich, T. Cowan, and X. Guo, 2009: Argo profiles a rare occurrence of three consecutive positive Indian Ocean Dipole events, 2006–2008. Geophys. Res. Lett., 36, L08701, doi:10. 1029/2008GL037038.CrossRefGoogle Scholar
  6. Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234–238.CrossRefGoogle Scholar
  7. Chelton, D. B., F. J. Wentz, C. L. Gentenann, R. A. de Szoeke, and M. G. Schlax, 2000: Satellite microwave SST observation of transequatorial tropical instability waves. Geophys. Res. Lett., 27, 1239–1242.CrossRefGoogle Scholar
  8. Chen, D. K., and Coauthors, 2008: Argo global observation network and studies of upper ocean structure, variability and predictability. Advance in Earth Science, 23, 1–7. (in Chinese)Google Scholar
  9. Chowdary, J. S., C. Gnanaseelan, and S.-P. Xie, 2009: Westward propagation of barrier layer formation in the 2006–07 Rossby wave event over the tropical southwest Indian Ocean. Geophys. Res. Lett., 36, L04607, doi: 10.1029/2008GL036642.CrossRefGoogle Scholar
  10. Chu, P. C., L. M. Ivanov, O. V. Melnichenkov, and R. F. Li, 2008: Argo floats revealing bimodality of largescale mid-depth circulation in the North Atlantic. Acta Oceanologica Sinica, 27(2), 1–10.Google Scholar
  11. Danioux, E., P. Klein, and P. Rivière, 2008: Propagation of wind energy into the deep ocean through a fully turbulent mesoscale eddy field. J. Phys. Oceanogr., 38, 2224–2241.CrossRefGoogle Scholar
  12. Dong, S., J. Sprintall, S. T. Gille, and L. Talley, 2008: Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res., 113, 06013, doi: 10.1029/2006JC004051.CrossRefGoogle Scholar
  13. Duvel, J. P., R. Roca, and J. Vialard, 2004: Ocean mixed layer temperature variations induced by intraseasonal convective perturbations over the Indian Ocean. J. Atmos. Sci., 61, 3056–3082.CrossRefGoogle Scholar
  14. Duvel, J. P., and J. Vialard, 2007: Indo-Pacific sea surface temperature perturbations associated with intraseasonal oscillations of tropical convection. J. Climate, 20, 3056–3082.CrossRefGoogle Scholar
  15. Feng, M., and S. Wijffels, 2002: Intraseasonal variability in the South Equatorial Current of the east Indian Ocean. J. Phys. Oceanogr., 32, 265–277.CrossRefGoogle Scholar
  16. Foltz, G. R., and M. J. McPhaden, 2005: Mixed layer heat balance on intraseasonal time scales in the northwestern tropical Atlantic Ocean. J. Climate, 18, 4168–4184.CrossRefGoogle Scholar
  17. Fraile-Nuez, E., and A. Hernández-Guerra, 2006: Winddriven circulation for the eastern north Atlantic subtropical gyre from Argo data. Geophys. Res. Lett., 33, L03601, doi: 10.1029/2005GL025122.CrossRefGoogle Scholar
  18. Godfrey, J. S., R. A. Houze, R. H. Johnson, R. Lukas, J.-L. Redelsperger, A. Sumi, and R. Weller, 1998: Coupled Ocean-Atmosphere Response Experiment (COARE): An interim report. J. Geophys. Res., 103, 14395–14450.CrossRefGoogle Scholar
  19. Han, W., 2005: Origins and dynamics of the 90-day and 30–60-day variations in the equatorial Indian Ocean. J. Phys. Oceanogr., 35, 708–728.CrossRefGoogle Scholar
  20. Han, W., W. T. Liu, and J. Lin, 2006: Impact of atmospheric submonthly oscillations on sea surface temperature of the tropical Indian Ocean. Geophys. Res. Lett., 33, L03609, doi: 10.1029/2005GL025082.CrossRefGoogle Scholar
  21. Hosoda, S., S. Minato, and N. Shikama, 2006: Seasonal temperature variation below the thermocline detected by Argo floats. Geophys. Res. Lett, 33, L13604, doi: 10.1029/2006GL026070.CrossRefGoogle Scholar
  22. Hu, R. J., and Q. Y. Liu, 2002: Annual and intraseasonal variations in sea surface height over the tropical Pacific. Oceanologia Et Limnologia Sinica, 33, 303–313. (in Chinese)Google Scholar
  23. Kessler, W. S., 2005: The oceans. Intraseasonal Variability of the Atmosphere-Ocean Climate System, Lau and Waliser, Eds., Springer, 175–222.Google Scholar
  24. Kessler, W. S., M. J. McPhaden, and K. M. Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100, 10613–10631.CrossRefGoogle Scholar
  25. Lau, K. M., and P. H. Chan, 1988: Intraseasonal and interannual variations of tropical convection: A possible link between the 40–50-day oscillation and ENSO? J. Atmos. Sci., 45, 506–521.CrossRefGoogle Scholar
  26. Li, C. Y., 1990: Intraseasonal oscillation in the atmosphere. Chinese J. Atmos. Sci., 14, 32–45. (in Chinese)Google Scholar
  27. Li, C. Y., R. J. Hu, and H. Yang, 2005: Intraseasonal oscillation in the tropical Indian Ocean. Adv. Atmos. Sci., 22, 617–624.CrossRefGoogle Scholar
  28. Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 28, 1109–1123.CrossRefGoogle Scholar
  29. Masumoto, Y., H. Hase, Y. Kuroda, H. Matsuura, and K. Takeuchi, 2005: Intraseasonal variability in the upper-layer currents observed in the eastern equatorial Indian Ocean. Geophys. Res. Lett., 32, L02607, doi: 10.1029/2004GL021896.CrossRefGoogle Scholar
  30. Matthews, A., P. Singhruck, and K. Heywood, 2007: Deep ocean impact of a Madden-Julian Oscillation observed by Argo floats. Science, 318, 1765–1769.CrossRefGoogle Scholar
  31. Miyama, T., D. Sengupta, and R. Senan, 2006: Dynamics of biweekly oscillations in the equatorial Indian Ocean. J. Phys. Oceanogr., 36, 827–846.CrossRefGoogle Scholar
  32. Murty, V. S. N., and Coauthors, 2006: Indian Moorings: Deep-sea current meter moorings in the Eastern Equatorial Indian Ocean. CLIVAR Exchanges, 11(4), 5–8.Google Scholar
  33. Ohno, Y., T. Kobayashi, N. Iwasaka, and T. Suga, 2004: The mixed layer depth in the North Pacific as detected by the Argo floats. Geophys. Res. Lett., 31, L11306, doi: 10.1029/2004GL019576.CrossRefGoogle Scholar
  34. Roemmich, D., and W. B. Owens, 2000: The Argo Project: Global ocean observations for understanding and prediction of climate variability. Oceanography, 13, 45–50.CrossRefGoogle Scholar
  35. Saji, N. H., S.-P. Xie, and C.-Y. Tam, 2006: Satellite observations of intense intraseasonal cooling events in the tropical south Indian Ocean. Geophys. Res. Lett., 33, L14704, doi: 10.1029/2006GL026525.CrossRefGoogle Scholar
  36. Sato, K., T. Suga, and K. Hanawa, 2006: Barrier layers in the subtropical gyres of the world’s oceans. Geophys. Res. Lett., 33, L08603, doi: 10.1029/2005GL025631CrossRefGoogle Scholar
  37. Schiller, A., and J. S. Godfrey, 2003: Indian Ocean intraseasonal variability in an ocean general circulation model. J. Climate, 16, 21–39.CrossRefGoogle Scholar
  38. Schott, F., and J. P. McCreary, 2001: The monsoon circulation of the Indian Ocean. Progress in Oceanography, 51, 1–123.CrossRefGoogle Scholar
  39. Sengupta, D., B. N. Goswami, and R. Senan, 2001: Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys. Res. Lett., 28, 4127–4130.CrossRefGoogle Scholar
  40. Sengupta, D., R. Senan, V. S. N. Murty, and V. Fernando, 2004: A biweekly mode in the equatorial Indian Ocean. J. Geophys. Res., 109, C10003, doi: 10.1029/2004JC002329.CrossRefGoogle Scholar
  41. Shinoda, T., and H. H. Hendon, 1998: Mixed layer modeling of intraseasonal variability in the tropical western Pacific and Indian oceans. J. Climate, 11, 2668–2685.CrossRefGoogle Scholar
  42. Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 61–78.CrossRefGoogle Scholar
  43. Vialard, J., G. Foltz, M. McPhaden, J. P. Duvel, and C. de Boyer Monte’gut, 2008: Strong Indian Ocean cooling associated with the Madden-Julian oscillation in late 2007 and early 2008. Geophys. Res. Lett., 35, L19608, doi: 10.1029/2008GL035238.CrossRefGoogle Scholar
  44. Waliser, D. E., R. Murtugudde, and L. E. Lucas, 2003: Indo-Pacific Ocean response to atmospheric intraseasonal variability: 1. Austral summer and the Madden-Julian Oscillation. J. Geophys. Res., 108, 3160, doi: 10.1029/2002JC001620.CrossRefGoogle Scholar
  45. Webster, P. J., and Coauthors, 2002: The JASMINE pilot study. Bull. Amer. Meteor. Soc., 11, 1603–1630.CrossRefGoogle Scholar
  46. Xie, S.-P., W. T. Liu, Q. Liu, and M. Nonaka, 2001: Farreaching effects of the Hawaiian Islands on the Pacific Ocean-atmosphere system. Science, 292, 2057–2060.CrossRefGoogle Scholar
  47. Xu, J. P., 2002: Studies of Global Argo Ocean Observation. Ocean Press, Beijing, 115pp. (in Chinese)Google Scholar
  48. Yasunari, T., 1981: Structure of an Indian summer monsoon system with around 40-day period. J. Meteor. Soc. Japan, 59, 336–354.Google Scholar
  49. Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi: 10.1029/2004RG000158.CrossRefGoogle Scholar
  50. Zhou, L., R. Murtugudde, and M. Jochum, 2008: Dynamics of the intraseasonal oscillations in the Indian Ocean south equatorial current. J. Phys. Oceanogr., 38, 121–132.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Physical Oceanography Laboratory and Ocean-Atmosphere Interaction and Climate LaboratoryOcean University of ChinaQingdaoChina
  2. 2.Jiaozhou Meteorological BureauJiaozhou, QingdaoChina

Personalised recommendations