Advances in Atmospheric Sciences

, Volume 29, Issue 2, pp 285–294 | Cite as

Observational evidence for the Monin-Obukhov similarity under all stability conditions

  • Shengjie Niu (牛生杰)Email author
  • Lijuan Zhao (赵丽娟)
  • Chunsong Lu (陆春松)
  • Jun Yang (杨 军)
  • Jing Wang (王 静)
  • Weiwei Wang (王巍巍)


Data collected in the surface layer in a northern suburban area of Nanjing from 15 November to 29 December 2007 were analyzed to examine the Monin-Obukhov similarity for describing the turbulent fluctuations of 3D winds under all stability conditions and to obtain the turbulence characteristics under different weather conditions. The results show that the dimensionless standard deviations of turbulent velocity components (σ u /u*, σ υ /u*, σ w /u*) and dimensionless turbulent kinetic energy (TKE) can be well described by “1/3” power law relationships under stable, neutral, and unstable conditions, with σ u /u* > σ υ /u* > σ w /u*. Land use and land cover changes mainly impact dimensionless standard deviations of horizontal component fluctuations, but they have very little on those of the vertical component. The dimensionless standard deviations of wind components and dimensionless TKE are remarkably affected by different weather conditions; the deviations of horizontal wind component and dimensionless TKE present fog day > clear sky > overcast > cloudy; the trend of the vertical wind component is the reverse. The surface drag coefficient at a Nanjing suburban measurement site during the observation period was obviously higher than at other reported plains and plateau areas, and was approximately one order larger in magnitude than the reported plains areas. Dimensionless standard deviation of temperature declined with increasing |z′/L| with an approximate “−1/3” slope in unstable stratification and “−2/3” slope in stable stratification.

Key words

Monin-Obukhov similarity theory boundary stability boundary layer parameterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Argüeso, D., J. M. Hidalgo-Munoz, S. R. Gámiz-Fortis, M. J. Esteban-Parra, J. Dudhia, and Y. Castro-Díez, 2011: Evaluation of WRF parameterizations for climate studies over Southern Spain using a multi-step regionalization. J. Climate, 24(21), 5633–5651, doi: 10.1175/JCLI-D-11-00073.1.CrossRefGoogle Scholar
  2. Bian, L., L. Lu, Y. Cheng, and C. Lu, 2001: Turbulent measurement over the southeastern Tibetan Plateau. Journal of Applied Meteorological Science, 12(1), 1–13. (in Chinese)Google Scholar
  3. Braun, S. A., and W. K. Tao, 2000: Sensitivity of high-resolution simulations of hurricane Bob (1991) to planetary boundary layer parameterization. Mon. Wea. Rev., 128, 3941–3961.CrossRefGoogle Scholar
  4. Carson, D. J., and P. J. R. Richards, 1978: Modelling surface turbulent fluxes in stable conditions. Bound.-Layer Meteor., 14, 67–81.CrossRefGoogle Scholar
  5. Caughey, S. J., J. C. Wyngaard, and J. C. Kaimal, 1979: Turbulence in the evolving stable boundary layer. J. Atmos. Sci., 36, 1041–1052.Google Scholar
  6. Chen, M., Z. Li, and Q. Wang, 2000: A study of turbulence structure and turbulence transfer characteristic in the surface-layer at Nanjing city. Scientia Meteorological Sinica, 20, 111–119. (in Chinese)Google Scholar
  7. Cheng, Y., M. B. Parlange, and W. Brutsaert, 2005: Pathology of Monin-Obukhov similarity in the stable boundary layer. J. Geophys. Res., 110, D06101, doi: 10.1029/2004JD004923.CrossRefGoogle Scholar
  8. Davidson, K. L., 1974: Observational results on the influence of stability and wind-wave coupling on momentum transfer and turbulence fluctuations over ocean waves. Bound.-Layer Meteor., 6, 305–332.CrossRefGoogle Scholar
  9. Deardorff, J.W., 1970: A three-dimensional numerical investigation of the idealized planetary boundary layer. Geophys. Fluid Dyn., 1, 377–410.CrossRefGoogle Scholar
  10. Dias, N. L., and W. Brutsaert, 1996: Similarity of scalars under stable stratification. Bound.-Layer Meteor., 80, 355–373.CrossRefGoogle Scholar
  11. Dias, N. L., W. Brutsaert, and M. L. Wesley, 1995: z-Less stratification under stable conditions. Bound.-Layer Meteor., 75, 175–187.CrossRefGoogle Scholar
  12. Eugster, W., and W. Senn, 1995: A cospectral correction model for measurement of turbulent NO2 flux. Bound.-Layer Meteor., 74(4), 321–340.CrossRefGoogle Scholar
  13. Foken, T., 2006: 50 years of the Monin-Obukhov similarity theory. Bound.-Layer Meteor., 119, 431–447, doi: 10.1007/s10546-006-9048-6.CrossRefGoogle Scholar
  14. Foken, T., and B. Wichura, 1996: Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology, 78(1), 83–105.CrossRefGoogle Scholar
  15. Forrer, J., and M. W. Rotach, 1997: On the turbulence structure in the stable boundary layer over the Greenland ice sheet. Bound.-Layer Meteor., 85, 111–136.CrossRefGoogle Scholar
  16. Grimmond, C. S. B., and T. R. Oke, 1999: Aerodynamic properties of urban areas derived from analysis of urban form. J. Appl. Meteor., 38, 1262–1292.CrossRefGoogle Scholar
  17. Grimmond, C. S. B., and T. R. Oke, 2002: Turbulent heat fluxes in urban areas: Observations and a localscale urban meteorological parameterization scheme (LUMPS). J. Appl. Meteor., 41, 792–810.CrossRefGoogle Scholar
  18. Hammerle, A., A. Haslwanter, M. Schmitt, M. Bahn, U. Tappeiner, A. Cernusca, and G. Wohlfahrt, 2007: Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope. Bound.-Layer Meteor., 122(2), 397–416, doi: 10.1007/s10546-006-9109-x.CrossRefGoogle Scholar
  19. Hartogensis, O. K., and H. A. R. De Bruin, 2005: Monin-Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Bound.-Layer Meteor., 116, 253–276, doi: 10.1007/s10546-004-2817-1.CrossRefGoogle Scholar
  20. Hicks, B. B., 1976: Wind profile relationships from Wangara Experiment. Quart. J. Roy. Meteor. Soc., 102, 535–551.Google Scholar
  21. Hill, K. A., and G. M. Lackmann, 2009: Analysis of idealized tropical cyclone simulations using the Weather Research and Forecasting model: Sensitivity to turbulence parameterization and grid spacing. Mon. Wea. Rev., 137, 745–765, doi: 10.1175/2008MWR2220.1.CrossRefGoogle Scholar
  22. Hiller, R., M. J. Zeeman, and W. Eugster, 2008: Eddycovariance flux measurements in the complex terrain of an Alpine Valley in Switzerland. Bound.-Layer Meteor., 127, 449–467, doi: 10.1007/s10546-008-9267-0.CrossRefGoogle Scholar
  23. Howell, J. F., and J. Sun, 1999: Surface-layer fluxes in stable conditions. Bound.-Layer Meteor., 90, 495–520.CrossRefGoogle Scholar
  24. Kaimal, J. C., J. C. Wyngaard, D. A. Hauger, O. R. Cote, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 2152–2169.CrossRefGoogle Scholar
  25. Li, Y., Y. Li, and X. Zhao, 2008: The comparison and analysis of ABL observational data on the east edge of Tibetan Plateau and in Chengdu Plain II: Characteristics of turbulence in the surface layer. Plateau and Mountain Meteorology Research, 28(3), 8–14. (in Chinese)Google Scholar
  26. Liu, H., and Z. Hong, 2000: Turbulence characteristics of surface layer in the Gaize region of Tibetan Plateau. Scientia Atmospheric Sinica, 24, 289–300. (in Chinese)Google Scholar
  27. Liu, H., Z. Hong, and Q. Li, 2002: Turbulent statistical characteristics over the urban surface. Chinese J. Atmos. Sci., 26, 173–181. (in Chinese)Google Scholar
  28. Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375–396.CrossRefGoogle Scholar
  29. Mahrt, L., J. Sun, W. Blumen, T. Delany, and S. Oncley, 1998: Nocturnal boundary-layer regimes. Bound.-Layer Meteor., 88, 255–278.CrossRefGoogle Scholar
  30. Malhi, Y. S., 1995: The significance of the dual solutions for heat fluxes measured by the temperature fluctuation method in stable conditions. Bound.-Layer Meteor., 74, 389–396.CrossRefGoogle Scholar
  31. Martilli, A., 2002: Numerical study of urban impact on boundary layer structure: Sensitivity to wind speed, urban morphology, and rural soil moisture. J. Appl. Meteor., 41, 1247–1266.CrossRefGoogle Scholar
  32. Masson, V., C. S. B. Grimmond, and T. R. Oke, 2002: Evaluation of the town energy balance (TEB) scheme with direct measurements from dry districts in the cities, J. Appl. Meteor., 41, 1011–1026.Google Scholar
  33. Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the ground layer of the atmosphere. Trudy Geofizicheskogo Instituta, Akademiya Nauk SSSR, 24(151), 163–187.Google Scholar
  34. Nieuwstadt, F. T. M., 1984a: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 2202–2216.CrossRefGoogle Scholar
  35. Nieuwstadt, F. T. M., 1984b: Some aspects of the turbulent stable boundary layer. Bound.-Layer Meteor., 30, 31–55.CrossRefGoogle Scholar
  36. Pahlow, M., M. B. Parlange, and F. P. Agel, 2001: On Monin-Obukhov similarity in the stable atmospheric boundary layer. Bound.-Layer Meteor., 99, 225–248.CrossRefGoogle Scholar
  37. Panofsky, H. A. and J. A. Dutton, 1984: Atmospheric Turbulence. John Wiley and Sons, New York, 397pp.Google Scholar
  38. Panofsky, H. A., H. Tennekes, D. H. Lenschow, and J. C. Wyngaard, 1977: The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound.-Layer Meteor., 11, 355–361.CrossRefGoogle Scholar
  39. Peng, J., X. Wu, Z. Jiang, and H. Liu, 2008: Comparison of turbulent characters over urban and suburban surface layer in Nanjing winter. Journal of Nanjing Institute of Meteorology, 31(6), 871–878. (in Chinese)Google Scholar
  40. Rotach, M. W., 1995: Profiles of turbulence statistics in and above on urban street canyon. Atmos. Environ., 29, 1473–1486.CrossRefGoogle Scholar
  41. Sharan, M., and S. G. Gopalakrishnan, 1999: A local parameterization scheme for σw under stable conditions. J. Appl. Meteor., 38, 617–622.CrossRefGoogle Scholar
  42. Simpson, I. J., G. W. Thurtell, H. H. Neumann, G. D. Hartog, and G. C. Edwards, 1998: The validity of similarity theory in the roughness sublayer above forests. Bound.-Layer Meteor., 87, 69–99.CrossRefGoogle Scholar
  43. Smedman, A., 1988: Observations of a multi-level turbulence structure in a very stable boundary layer. Bound.-Layer Meteor., 44, 231–253.CrossRefGoogle Scholar
  44. Sorbjan, Z., 1987: An examination of local similarity theory in the stably stratified boundary layer. Bound.-Layer Meteor., 38, 63–71.CrossRefGoogle Scholar
  45. Srinivas, C. V., R. Venkatesan, D. V. Bhaskar Rao, and D. Hari Prasad, 2007: Numerical simulation of Andhra severe cyclone (2003): Model sensitivity to the boundary layer and convection parameterization. Pure Appl. Geophys., 164, 1465–1487, doi: 10.1007/s00024-007-0228-1.CrossRefGoogle Scholar
  46. Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, 666pp.Google Scholar
  47. Vickers, D., and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14(3), 512–526.CrossRefGoogle Scholar
  48. Wang, J., W. Wang, Y. Ao, F. Sun, and S. Wang, 2007: Turbulence flux measurements under complicated conditions. Advances in Earth Science, 22(8), 791–797. (in Chinese)Google Scholar
  49. Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapor transfer. Quart. J. Roy. Meteor. Soc., 106(447), 85–100.CrossRefGoogle Scholar
  50. Wilson, K., A., and Coauthors, 2002: Energy balance closure at fluxnet sites. Agricultural and Forest Meteorology, 113, 223–243.CrossRefGoogle Scholar
  51. Xu, Y., C. Zhou, and Z. Li, 1997: Turbulent structure and local similarity in the tower layer over the Nanjing area. Bound.-Layer Meteor., 82, 1–21.CrossRefGoogle Scholar
  52. Xu, Y., C. Zhou, Z. Li, and Z. Li, 1993: Microstructure and spectral characteristics of turbulence in the surface layer atmosphere over Guangzhou. Scientia Atmospheric Sinica, 17, 338–348. (in Chinese)Google Scholar
  53. Yao, W., 2005: Characteristics of urban boundary lower layer turbulence dynamical structure and its effects in Beijing. PH. D. dissertation, Chinese Academy of Meteorological Sciences and Nanjing University of Information Science & Technology, 175pp.Google Scholar
  54. Zhou, M., X. Xu, L. Bian, and J. Chen, 1998: Observational analysis and dynamic study of the boundary layer of the Qinghai-Xizang Plateau. Chinese Meteorological Press, Beijing, 125pp.Google Scholar
  55. Zhou, M., W. Yao, X. Xu, and H. Yu, 2005: Vertical dynamic and thermodynamic characteristics of urban lower boundary layer and its relationship with aerosol concentration over Beijing. Science China (D), 48(SuppII), 25–37. (in Chinese)Google Scholar
  56. Zilitinkevich, S. S., and I. N. Esau, 2007: Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 125, 193–205, doi: 10.1007/s10546-007-9187-4.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shengjie Niu (牛生杰)
    • 1
    Email author
  • Lijuan Zhao (赵丽娟)
    • 1
  • Chunsong Lu (陆春松)
    • 1
  • Jun Yang (杨 军)
    • 1
  • Jing Wang (王 静)
    • 1
  • Weiwei Wang (王巍巍)
    • 1
  1. 1.Key Laboratory of Meteorological Disaster of Ministry of Education, School of Atmospheric PhysicsNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations