Advances in Atmospheric Sciences

, Volume 29, Issue 2, pp 391–406 | Cite as

An investigation of the effects of wave state and sea spray on an idealized typhoon using an air-sea coupled modeling system

  • Bin Liu (刘 斌)
  • Changlong Guan (管长龙)
  • Li’an Xie
  • Dongliang Zhao (赵栋梁)
Article

Abstract

In this study, the impact of atmosphere-wave coupling on typhoon intensity was investigated using numerical simulations of an idealized typhoon in a coupled atmosphere-wave-ocean modeling system. The coupling between atmosphere and sea surface waves considered the effects of wave state and sea sprays on air-sea momentum flux, the atmospheric low-level dissipative heating, and the wave-state-affected seaspray heat flux. Several experiments were conducted to examine the impacts of wave state, sea sprays, and dissipative heating on an idealized typhoon system. Results show that considering the wave state and sea-spray-affected sea-surface roughness reduces typhoon intensity, while including dissipative heating intensifies the typhoon system. Taking into account sea spray heat flux also strengthens the typhoon system with increasing maximum wind speed and significant wave height. The overall impact of atmosphere-wave coupling makes a positive contribution to the intensification of the idealized typhoon system. The minimum central pressure simulated by the coupled atmosphere-wave experiment was 16.4 hPa deeper than that of the control run, and the maximum wind speed and significant wave height increased by 31% and 4%, respectively. Meanwhile, within the area beneath the typhoon center, the average total upward air-sea heat flux increased by 22%, and the averaged latent heat flux increased more significantly by 31% compared to the uncoupled run.

Key words

wave state sea spray dissipative heating tropical cyclone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alamaro, M., 2001: Wind wave tank for experimental investigation of momentum and enthalpy transfer from the ocean surface at high wind speed. M. S. thesis, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 79pp.Google Scholar
  2. Alamaro, M., K. A. Emanuel, J. J. Colton, W. R. McGillis, and J. Edson, 2002: Experimental investigation of air-sea transfer of momentum and enthalpy at high wind speed. 25th Conference on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 17C.6. [Available online at http://ams.confex.com/ams/25HURR/techprogram/paper 35185.htm].Google Scholar
  3. Andreas, E. L., 1989: Thermal and size evolution of sea spray droplets. CRREL Rep. 89-11, 47pp. [Available online at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA210484].
  4. Andreas, E. L., 1990: Time constants for the evolution of sea spray droplets. Tellus (B), 42, 481–497.CrossRefGoogle Scholar
  5. Andreas, E. L., 1992: Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res., 97, 11429–11441.CrossRefGoogle Scholar
  6. Andreas, E. L., and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 3741–3751.CrossRefGoogle Scholar
  7. Andreas, E. L., J. B. Edson, E. C. Monahan, M. P. Rouault, and S. D. Smith, 1995: The spray contribution to net evaporation from the sea: A review of recent progress. Bound.-Layer Meteor., 72, 3–52.CrossRefGoogle Scholar
  8. Bao, J.-W., J. M. Wilczak, J.-K. Choi, and L. H. Kantha, 2000: Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 2190–2210.CrossRefGoogle Scholar
  9. Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233–240.CrossRefGoogle Scholar
  10. Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions, 1. Model description and validation. J. Geophys. Res., 104, 7649–7666.CrossRefGoogle Scholar
  11. Businger, S., and J. A. Businger, 2001: Viscous dissipation of turbulence kinetic energy in storms. J. Atmos. Sci., 58, 3793–3796.CrossRefGoogle Scholar
  12. Chaen, M., 1973: Studies on the production of sea-salt particles on the sea surface. Memoirs of the Faculty of Fisheries, Kagoshima University, 22, 49–107.Google Scholar
  13. Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639–640.CrossRefGoogle Scholar
  14. Desjardins, S., J. Mailhot, and R. Lalbeharry, 2000: Examination of the impact of a coupled atmospheric and ocean wave system. Part I: Atmospheric aspects. J. Phys. Oceanogr., 30, 385–401.Google Scholar
  15. Donelan, M. A., 1990: Air-sea interaction. The Sea: Ocean Engineering Science, Mehaute and Hanes, Eds., Wiley-Interscience, 239–292.Google Scholar
  16. Donelan, M. A., F. W. Dobson, S. D. Smith, and R. J. Anderson, 1993: On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 23, 2143–2149.CrossRefGoogle Scholar
  17. Donelan, M. A., and Coauthors, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306., doi:18310.11029/12004GL019460.CrossRefGoogle Scholar
  18. Doyle, J. D., 1995: Coupled ocean wave/atmosphere mesoscale model simulations of cyclogenesis. Tellus, 47A, 766–788.Google Scholar
  19. Doyle, J. D., 2002: Coupled atmosphere-ocean wave simulations under high wind conditions. Mon. Wea. Rev., 130, 3087–3099.CrossRefGoogle Scholar
  20. Drennan, W. M., H. C. Graber, D. Hauser, and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108, 8062., doi:8010.1029/2000JC000715.CrossRefGoogle Scholar
  21. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.CrossRefGoogle Scholar
  22. Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. The Global Atmosphere-Ocean System, 2, 121–142.Google Scholar
  23. Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of airsea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571–591.CrossRefGoogle Scholar
  24. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120.CrossRefGoogle Scholar
  25. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.CrossRefGoogle Scholar
  26. Iida, N., Y. Toba, and M. Chaen, 1992: A new expression for the production rate of sea water droplets on the sea surface. J. Oceanogr., 48, 439–460.CrossRefGoogle Scholar
  27. Jacob, R., J. Larson, and E. Ong, 2005: M × N communication and parallel interpolation in Community Climate System Model Version 3 using the model coupling toolkit. International Journal of High Performance Computing Applications, 19, 293–307.CrossRefGoogle Scholar
  28. Janssen, P. A. E. M., 1989: Wave-induced stress and the drag of airflow over sea waves. J. Phys. Oceanogr., 19, 745–754.CrossRefGoogle Scholar
  29. Janssen, P. A. E. M., 1991: Quasi-linear theory of windwave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 1631–1642.CrossRefGoogle Scholar
  30. Janssen, P. A. E. M., 1994: Results with a coupled wind wave model. ECMWF Tech. Rep. No. 71, 58pp.Google Scholar
  31. Janssen, P. A. E. M., and P. Viterbo, 1996: Ocean waves and the atmospheric climate. J. Climate, 9, 1296–1287.CrossRefGoogle Scholar
  32. Johnson, H. K., J. Hojstrup, H. J. Vested, and S. E. Larsen, 1998: On the Dependence of Sea Surface Roughness on Wind Waves. J. Phys. Oceanogr., 28, 1702–1716.CrossRefGoogle Scholar
  33. Jones, I. S. F., and Y. Toba, 2001: Wind Stress over the Ocean. Cambridge University Press, 307pp.Google Scholar
  34. Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784–2802.CrossRefGoogle Scholar
  35. Kepert, J. D., C. W. Fairall, and J.-W. Bao, 1999: Modelling the Interaction between the Atmospheric Boundary Layer and Evaporating Sea Spray Droplets. Kluwer Academic Publishers, 363–409.Google Scholar
  36. Lalbeharry, R., J. Mailhot, S. Desjardins, and L. Wilson, 2000: Examination of the impact of a coupled atmospheric and ocean wave system. Part II: Ocean wave aspects. J. Phys. Oceanogr., 30, 402–415.CrossRefGoogle Scholar
  37. Li, W., 2004: Modelling air-sea fluxes during a western Pacific typhoon: Role of sea spray. Adv. Atmos. Sci., 21, 269–276.CrossRefGoogle Scholar
  38. Lionello, P., P. Malguzzi, and A. Buzzi, 1998: On the coupling between the atmospheric circulation and the ocean wave field: An idealized case. J. Phys. Oceanogr., 28, 161–177.CrossRefGoogle Scholar
  39. Liu, B., 2007: Physical basis and numerical study of the coupled atmosphere-wave model. Ph.D. dissertation, Ocean University of China, 156pp.Google Scholar
  40. Liu, B., C. Guan, and L. Xie, 2008: Investigating the impacts of wave state and sea spray on typhoon via a coupled atmosphere-wave system: The idealized case. 28th Conference on Hurricanes and Tropical Meteorology, Orlando, Florida, American Meteorological Society. [Available online at http://ams.confex.com/ams/pdfpapers/138367.pdf].Google Scholar
  41. Liu, B., H. Liu, L. Xie, C. Guan, and D. Zhao, 2011: A coupled atmosphere-wave-ocean modeling system: Simulation of the intensity of an idealized tropical cyclone. Mon. Wea. Rev., 139, 132–152.CrossRefGoogle Scholar
  42. Liu, H., and L. Xie, 2009: A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989. Continental Shelf Research, 29, 1454–1463.CrossRefGoogle Scholar
  43. Makin, V. K., 2005: A note on the drag of the sea surface at hurricane winds. Bound.-Layer Meteor., 115, 169–176.CrossRefGoogle Scholar
  44. Mellor, G. L., and A. F. Blumberg, 1985: Modeling vertical and horizontal diffusivities with the sigma coordinate system. Mon. Wea. Rev., 113, 1379–1383.CrossRefGoogle Scholar
  45. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.CrossRefGoogle Scholar
  46. Monahan, E. C., 1986: The ocean as a source for atmospheric particles. The Role of Air-Sea Exchange in Geochemical Cycling, Buat-Menard, Ed., D. Reidel Publishing Company, Dordrecht, 129–163.Google Scholar
  47. Perrie, W., and Y. Zhang, 2001: A regional climate model coupled to ocean waves: Synoptic to multimonthly simulations. J. Geophys. Res., 106, 17753–17771.CrossRefGoogle Scholar
  48. Perrie, W., W. Zhang, X. Ren, Z. Long, E. L. Andreas, J. Gyakum, and R. McTaggart-Cowan, 2004: The role of waves, sea spray and the upper ocean in midlatitude storm development. Preprints, 26th Conference on Hurricanes and Tropical Meteorology of the American Meteorological Society, Miami, FL, 2pp.Google Scholar
  49. Piazzola, J., P. Forget, and S. Despiau, 2002: A sea spray generation function for fetch-limited conditions. Ann. Geophys., 20, 121–131.CrossRefGoogle Scholar
  50. Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279–283.CrossRefGoogle Scholar
  51. Powers, J. G., and M. T. Stoelinga, 2000: A coupled airsea mesoscale model: Experiments in atmospheric sensitivity to marine roughness. Mon. Wea. Rev., 128, 208–228.CrossRefGoogle Scholar
  52. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF Version 2. NCAR Technical Note NCAR/TN-468+STR, 88pp.Google Scholar
  53. Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15467–15472.CrossRefGoogle Scholar
  54. Smith, S. D., and Coauthors, 1992: Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteor., 60, 109–142.CrossRefGoogle Scholar
  55. Tenerelli, J. E., S. S. Chen, W. Zhao, and M. A. Donelan, 2001: High-resolution simulations of hurricane Floyd using MM5 coupled with a wave model. Workshop Program for the Eleventh PSU/NCAR MM5 Users’ Workshop, 4pp.Google Scholar
  56. Toba, Y., N. Iida, H. Kawamura, N. Ebuchi, and I. S. F. Jones, 1990: The wave dependence of sea-surface wind stress. J. Phys. Oceanogr., 20, 705–721.CrossRefGoogle Scholar
  57. Wang, Y., J. D. Kepert, and G. J. Holland, 2001: The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev., 129, 2481–2500.CrossRefGoogle Scholar
  58. Weber, S. L., H. V. Storch, P. Viterbo, and L. Zambresky, 1993: Coupling an ocean wave model to an atmospheric general circulation model. Climate Dyn., 9, 53–61.CrossRefGoogle Scholar
  59. Weisse, R., and C. Schneggenburger, 2002: The effect of different sea state dependent roughness parameterizations on the sensitivity of the atmospheric circulation in a regional model. Mon. Wea. Rev., 130, 1595–1602.CrossRefGoogle Scholar
  60. Weisse, R., H. Heyen, and H. Von Storch, 2000: Sensitivity of a regional atmospheric model to a sea statedependent roughness and the need for ensemble calculations. Mon. Wea. Rev., 128, 3631–3642.CrossRefGoogle Scholar
  61. Wu, J., 1980: Wind-stress coefficients over sea surface near neutral conditions—A revisit. J. Phys. Oceanogr., 13, 1441–1451.CrossRefGoogle Scholar
  62. Xie, L., H. Liu, and M. Peng, 2008: The effect of wavecurrent interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989. Ocean Modelling, 20, 252–269.CrossRefGoogle Scholar
  63. Xie, L., K. Wu, L. Pietrafesa, and C. Zhang, 2001: A numerical study of wave-current interaction through surface and bottom stresses: Wind-driven circulation in the South Atlantic Bight under uniform winds. J. Geophys. Res., 106, 16841–16855.CrossRefGoogle Scholar
  64. Xie, L., B. Liu, H. Liu, and C. Guan, 2010: Numerical simulation of tropical cyclone intensity using an air-sea-wave coupled prediction system. Advances in Geosciences, 18 (OS), 19–43.Google Scholar
  65. Zhang, D.-L., and E. Altshuler, 1999: The effects of dissipative heating on hurricane intensity. Mon. Wea. Rev., 127, 3032–3038.CrossRefGoogle Scholar
  66. Zhang, W., W. Perrie, and W. Li, 2006: Impacts of waves and sea Sspray on midlatitude storm structure and intensity. Mon. Wea. Rev., 134, 2418–2442.CrossRefGoogle Scholar
  67. Zhao, D., and Y. Toba, 2001: Dependence of whitecap coverage on wind and wind-wave properties. J. Oceanogr., 57, 603–616.CrossRefGoogle Scholar
  68. Zhao, D., Y. Toba, K.-I. Sugioka, and S. Komori, 2006: New sea spray generation function for spume droplets. J. Geophys. Res., 111, C02007., doi: 02010.01029/02005JC002960.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bin Liu (刘 斌)
    • 1
    • 2
  • Changlong Guan (管长龙)
    • 2
  • Li’an Xie
    • 1
  • Dongliang Zhao (赵栋梁)
    • 1
  1. 1.Department of Marine, Earth and Atmospheric SciencesNorth Carolina State UniversityRaleighUSA
  2. 2.Physical Oceanography LaboratoryOcean University of ChinaQingdaoChina

Personalised recommendations