Response of a grassland ecosystem to climate change in a theoretical model

Article

Abstract

The response of a grassland ecosystem to climate change is discussed within the context of a theoretical model. An optimization approach, a conditional nonlinear optimal perturbation related to parameter (CNOP-P) approach, was employed in this study. The CNOP-P, a perturbation of moisture index in the theoretical model, represents a nonlinear climate perturbation. Two kinds of linear climate perturbations were also used to study the response of the grassland ecosystem to different types of climate changes.

The results show that the extent of grassland ecosystem variation caused by the CNOP-P-type climate change is greater than that caused by the two linear types of climate change. In addition, the grassland ecosystem affected by the CNOP-P-type climate change evolved into a desert ecosystem, and the two linear types of climate changes failed within a specific amplitude range when the moisture index recovered to its reference state. Therefore, the grassland ecosystem response to climate change was nonlinear. This study yielded similar results for a desert ecosystem seeded with both living and wilted biomass litter. The quantitative analysis performed in this study also accounted for the role of soil moisture in the root zone and the shading effect of wilted biomass on the grassland ecosystem through nonlinear interactions between soil and vegetation. The results of this study imply that the CNOP-P approach is a potentially effective tool for assessing the impact of nonlinear climate change on grassland ecosystems.

Key words

conditional nonlinear optimal perturbation parameter perturbation CNOP-P grassland ecosystem climate change 

References

  1. Barclay, A., P. E. Gill, and J. B. Rosen, 1997: SQP methods and their application to numerical optimal control. Numerical Analysis Report 97-3, Department of Mathematics, University of California, San Diego, La Jolla, CA, 14pp.Google Scholar
  2. Claussen, M, C. Kubatzki, V. Brovkin, A. Ganopolski, P. Hoelzmann, and H. J. Pachur, 1999: Simulation of an Abrupt Change in Saharan Vegetation in the Mid-Holocene. Geophys. Res. Lett., 26(14), 2037–2040.CrossRefGoogle Scholar
  3. Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, 1986: Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Technical Note NCAR/TN275+ STR, 69pp.Google Scholar
  4. Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Technical Note NCAR/TN-387+STR, 72pp.Google Scholar
  5. Duan, W. S., M. Mu, and B. Wang, 2004: Conditional nonlinear optimal perturbation as the optimal precursors for El Niño-Southern Oscillation events. J. Geophys. Res., 109, D23105, doi: 10.1029/2004JD004756.CrossRefGoogle Scholar
  6. Duan, W. S., and M. Mu, 2006: Investigating decadal variability of El Niño Southern Oscillation asymmetry by conditional nonlinear optimal perturbation. J. Geophys. Res., 111, C07015, doi: 10.1029/2005JC003458.CrossRefGoogle Scholar
  7. Gao, X. J., Y. Luo, W. T. Lin, Z. C. Zhao, and G. Filippo, 2003: Simulation of Effects of Land Use Change on Climate in China by a Regional Climate Model. Adv. Atmos. Sci., 20(4), 583–592.CrossRefGoogle Scholar
  8. Hallgren, W. S., and A. J. Pitman, 2000: The uncertainty in simulations by a global biome model (BIOME3) to alternative parameter values. Global Change Biology, 6(5), 483–495.CrossRefGoogle Scholar
  9. Jia, B. R., G. S. Zhou, F. Y. Wang, Y. H. Wang, and E. S. Weng, 2007: Effects of Grazing on Soil Respiration of Leymus Chinensis Steppe. Climatic Change, 82, 211–223.CrossRefGoogle Scholar
  10. Klausmeier, C. A., 1999: Regular and irregular patterns in semiarid vegetation. Science, 284(5421), 1826–1828.CrossRefGoogle Scholar
  11. Liu, Z., M. Notaro, J. Kutzbach, and N. Liu, 2006a: Assessing Global Vegetation-Climate Feedbacks from Observations. J. Climate, 19, 787–814.CrossRefGoogle Scholar
  12. Liu, Z. Y., Y. Wang, R. Gallimore, M. Notaro, and I. C. Prentice, 2006b: On the cause of abrupt vegetation collapse in North Africa during the Holocene: Climate variability vs. vegetation feedback. Geophys. Res. Lett., 33, L22709, doi: 10.1029/2006GL028062.CrossRefGoogle Scholar
  13. Ma, Z. G., and C. Fu, 2001: Trend of surface humid index in the arid area of northern China. Acta Meteorologica Sinica, 59(6), 737–746. (in Chinese)Google Scholar
  14. Mitchell, S. W., and F. Csillag, 2001: Assessing the stability and uncertainty of predicted vegetation growth under climatic variability: Northern mixed grass prairie. Ecological Modelling, 139(2–3), 101–121.CrossRefGoogle Scholar
  15. Mu, M., and W. S. Duan, 2003: A new approach to studying ENSO predictability: Conditional nonlinear optimal perturbation. Chinese Science Bulletin, 48, 1045–1047.Google Scholar
  16. Mu, M., and B. Wang, 2007: Nonlinear instability and sensitivity of a theoretical grassland ecosystem to finite-amplitude perturbations. Nonlinear Processes in Geophysics, 14, 409–423.CrossRefGoogle Scholar
  17. Mu, M., and Z. N. Jiang, 2008: A new approach to the generation of initial perturbations for ensemble prediction: Conditional nonlinear optimal perturbation. Chinese Science Bulletin, 53(13), 2062–2068.CrossRefGoogle Scholar
  18. Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes in Geophysics, 10, 493–501.CrossRefGoogle Scholar
  19. Mu, M., L. Sun, and H. A. Dijikstra, 2004: The sensitivity and stability of the ocean’s thermohaline circulation to finite amplitude perturbations. Journal of Physical Oceanography, 34, 2305–2315.CrossRefGoogle Scholar
  20. Mu, M., W. S. Duan, and B. Wang, 2007a: Seasondependent dynamics of nonlinear optimal error growth and El Nino-Southern Oscillation predictability in a theoretical model. J. Geophys. Res., 112, D10113, doi: 10.1029/2005JD006981.CrossRefGoogle Scholar
  21. Mu, M., H. L. Wang, and F. F. Zhou, 2007b: A Preliminary application of conditional nonlinear optimal perturbation to adaptive observation. Chinese J. Atmos. Sci., 31(6), 1102–1112. (in Chinese)Google Scholar
  22. Mu, M., W. Duan, Q. Wang, and R. Zhang, 2010: An extension of conditional nonlinear optimal perturbation approach and its applications, Nonlinear Processes in Geophysics, 17, 211–220, doi: 10.5194/npg-17-211-2010.CrossRefGoogle Scholar
  23. Ni, J., 2004: Estimating grassland net primary productivity from field biomass measurements in temperate northern China. Plant Ecology, 174(2), 217–234.CrossRefGoogle Scholar
  24. Notaro, M., Z. Liu, and J. W. Williams, 2006: Observed Vegetation-Climate Feedbacks in the United States. J. Climate, 19, 763–786.CrossRefGoogle Scholar
  25. Piao, S. L., J. Y. Fang, L. Zhou, K. Tan, and S. Tao, 2007: Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochemical Cycles, 21, GB2002, doi: 10.1029/2005GB002634.CrossRefGoogle Scholar
  26. Rosero, E., Z. L. Yang, T. Wagener, L. E. Gulden, S. Yatheendradas, and G.Y. Niu, 2010: Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season, J. Geophys. Res., 115, D03106, doi: 10.1029/2009JD012035.CrossRefGoogle Scholar
  27. Sherratt, J. A., and G. J. Lord, 2007: Nonlinear dynamics and pattern bifurcation in a model for vegetation stripes in semi-arid environments. Theoretical Population Biology, 71, 1–11.CrossRefGoogle Scholar
  28. Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Vegetation Model. Global Change Biology, 9, 161–185.CrossRefGoogle Scholar
  29. Sun, L., M. Mu, D. J. Sun, and X. Y. Yin, 2005: Passive mechanism of decadal variation of thermohaline circulation. J. Geophys. Res., 110, C07025, doi: 10.1029/2005JC002897.CrossRefGoogle Scholar
  30. Sun, G. D., and M. Mu, 2009: Nonlinear feature of the abrupt transitions between multiple equilibria states of an ecosystem model. Adv. Atmos. Sci., 26(2), 293–304, doi: 10.1007/s00376-009-0293-8.CrossRefGoogle Scholar
  31. Woodward, F. I., 1987: Climate and Plant Distribution. Cambridge University Press, 174pp.Google Scholar
  32. Woodward, F. I., M. R. Lomas, and C. K. Kelly, 2004: Global climate and the distribution of plant biomes. Philos. Trans. Roy. Soc. London, 359B, 1465–1476.Google Scholar
  33. Xue, Y. K., and J. Shukla, 1993: The influence of land surface properties on Sahel climate. Part I: desertification. J. Climate, 6, 2232–2245.CrossRefGoogle Scholar
  34. Xue, Y., 1996: The Impact of Desertification in the Mongolian and the Inner Mongolian Grassland on the Regional Climate. J. Climate, 9, 2173–2189.CrossRefGoogle Scholar
  35. Zeng, N., and J. D. Neelin, 2000: The role of vegetation-climate interaction and interannual variability in shaping the African Savanna. J. Climate, 13, 2665–2670.CrossRefGoogle Scholar
  36. Zeng, N., K. Hales, and J. D. Neelin, 2002: Nonlinear dynamics in a coupled vegetation-atmosphere system and implications for desert-forest gradient. J. Climate, 15, 3474–3487.CrossRefGoogle Scholar
  37. Zeng, X. D., S. S. P. Shen, X. B. Zeng, and R. E. Dickinson, 2004: Multiple equilibrium states and the abrupt transitions in a dynamical system of soil water interacting with vegetation. Geophys. Res. Lett., 31, 5501, doi: 10.1029/2003GL018910.CrossRefGoogle Scholar
  38. Zeng, X. D., X. B. Zeng, S. S. P. Shen, R. E. Dickinson, and Q. C. Zeng, 2005: Vegetation-soil water interaction within a dynamical ecosystem model of grassland in semi-arid areas. Tellus, 57B, 189–202.Google Scholar
  39. Zeng, X. D., A. H. Wang, Q. C. Zeng, R. E. Dickinson, X. B. Zeng, and S. S. P. Shen, 2006: Intermediately complex models for the hydrological interactions in the atmosphere-vegetation-soil system. Adv. Atmos. Sci., 23(1), 127–140.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.The State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Ocean Circulation and Wave, Institute of OceanologyChinese Academy of SciencesQingdaoChina

Personalised recommendations