Advances in Atmospheric Sciences

, Volume 27, Issue 6, pp 1438–1452 | Cite as

Influences of climate change and its interannual variability on surface energy fluxes from 1948 to 2000

  • Li Sheng (盛 黎)Email author
  • Shuhua Liu (刘树华)
  • Heping Liu


Understanding changes in land surface processes over the past several decades requires knowledge of trends and interannual variability in surface energy fluxes in response to climate change. In our study, the Community Land Model version 3.5 (CLM3.5), driven by the latest updated hybrid reanalysis-observational surface climate data from Princeton University, is used to obtain global distributions of surface energy fluxes during 1948 to 2000. Based on the climate data and simulation results, long-term trends and interannual variability (IAV) of both climatic variables and surface energy fluxes for this span of 50+ years are derived and analyzed. Regions with strong long-term trends and large IAV for both climatic variables and surface energy fluxes are identified. These analyses reveal seasonal variations in the spatial patterns of climate and surface fluxes; however, spatial patterns in trends and IAV for surface energy fluxes over the past ∼50 years do not fully correspond to those for climatic variables, indicating complex responses of land surfaces to changes in the climatic forcings.

Key words

climate change surface energy fluxes trends interannual variability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol., 4, 1147–1167.CrossRefGoogle Scholar
  2. Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 2415–2434.CrossRefGoogle Scholar
  3. Bonan, G. B., 2002: Ecological Climatology: Concepts and Applications. Cambridge University Press, 678pp.Google Scholar
  4. Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111, D12106, doi: 10.1029/2005JD006548.CrossRefGoogle Scholar
  5. Brown, R. D., 2000: Northern Hemisphere snow cover variability and change, 1915–97. J. Climate, 13, 2339–2355.CrossRefGoogle Scholar
  6. Brutsaert, W., and M. B. Parlange, 1998: Hydrologic cycle explains the evaporation paradox. Nature, 396, 30, doi: 10.1038/23845.CrossRefGoogle Scholar
  7. Chapin III, F. S., and Coauthors, 2005: Role of landsurface changes in Arctic summer warming. Science, 310, 657–660.CrossRefGoogle Scholar
  8. Chen, M., P. Xie, and J. E. Janowiak, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeorol., 3, 249–266.CrossRefGoogle Scholar
  9. Cosgrove, B. A., and Coauthors, 2003: Land surface model spin-up behavior in the Northe American Land Data Assimilation System (NLDAS). J. Geophys. Res., 108, doi: 10.1029/2002JD003316.Google Scholar
  10. Dickinson, R. E., and Coauthors, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19, 2302–2324.CrossRefGoogle Scholar
  11. Dye, D. G., 2002: Variability and trends in the annual snow-cover cycle in Northern Hemisphere land areas, 1972–2000. Hydrological Processes, 16, 3065–3077.CrossRefGoogle Scholar
  12. Euskirchen, E. S., A. D. McGuire, and F. S. Chapin III, 2006: Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming. Global Change Biology, 13, 2425–2438.CrossRefGoogle Scholar
  13. Fan, Y., and H. V. D. Dool, 2004: Climate prediction center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res., 109, doi: 10.1029/2003JD004345.Google Scholar
  14. Feddema, J. J., K.W. Oleson, G. B. Bonan, L. O. Mearns, L. E. Buja, G. A. Meehl, and W. M. Washingtong, 2005: The importance of land-cover change in simulating future climates. Science, 310, 1674–1678.CrossRefGoogle Scholar
  15. Field, C. B., D. B. Lobell, H. A. Peters, and N. R. Chiariello, 2007: Feedbacks of terrestrial ecosystems to climate change. Annual Reviews, 32, 1–29.Google Scholar
  16. Golubev, V. S., J. H. Lawrimore, P. Y. Groisman, N. A. Speranskaya, S. A. Zhuravin, M. J. Menne, T. C. Peterson, and R. W. Malone, 2001: Evaporation changes over the contiguous United States and the former USSR: A reassessment. Science, 293, 474–479.CrossRefGoogle Scholar
  17. Hansen, J., R. Ruedy, M. Sato, M. Imhoff, W. Lawrence, D. Easterling, T. Peterson, and T. Karl, 2001: A closer look at United States and global surface temperature change. J. Geophys. Res., 106, 23947–23963.CrossRefGoogle Scholar
  18. Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrometeorology, 319, 83–95.Google Scholar
  19. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon et al., Eds., Cambridge Univ. Press, New York, 996pp.Google Scholar
  20. Jones, P. D., and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and update to 2001. J. Climate, 16, 306–223.Google Scholar
  21. Le Barbe, L., T. Lebel, and D. Tapsoba, 2002: Rainfall variability in West Africa during the years 1950–1990. J. Climate, 15, 187–202.CrossRefGoogle Scholar
  22. Lugina, K. M., P. Y. Groisman, K. Y. Vinnikov, V. V. Koknaeva, and N. A. Speranskaya, 2005: Monthly surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe, 1881–2004. Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN. [Available at:]Google Scholar
  23. Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25(6), 693–712.CrossRefGoogle Scholar
  24. Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar and R. R. Nemani, 1997: Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702, doi: 10.1038/396698a0.CrossRefGoogle Scholar
  25. Nozawa, T., T. Nagashima, H. Shiogama, and S. Crooks, 2005: Detecting natural influence on surface air temperature in the early twentieth century. Geophys.Res. Lett., 32, L20719, doi: 10.1029/2005GL023540.CrossRefGoogle Scholar
  26. Ohmura, A., and M. Wild, 2002: Is the hydrological cycle accelerating? Science, 298, 1345–1346.CrossRefGoogle Scholar
  27. Oleson, K. W., and Coauthors, 2004: Technical Description of the Community Land Model (CLM3). NCAR/TN-461+STR, NCAR TECHNICAL NOTE, Boulder, Colorado, 186pp.Google Scholar
  28. Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophy. Res., 113, G01021, doi: 10.1029/2007jg000563.CrossRefGoogle Scholar
  29. Peterson, T. C., and R. S. Vose, 1997: An overview of the Global Historical Climatoloty Network temperature database. Bulletin of the American Meteorological Society, 78, 2873–2848.Google Scholar
  30. Peterson, T. C., V. S. Golubev, and P. Y. Groisman, 1995: Evaporation losing its strengthe. Nature, 377, 687–688.CrossRefGoogle Scholar
  31. Qian, T., A. Dai, and K. E. Trenberth, 2007: Hydroclimatic trends in Mississippi River basin from 1948–2004. J. Climate, 20, 4599–4614.CrossRefGoogle Scholar
  32. Robinson, P. J., 2000: Temporal trends in United States dew point temperatures. International Journal of Climatology, 20, 985–1002.CrossRefGoogle Scholar
  33. Roderick, M. L., and G. D. Farquhar, 2004: Changes in Australian Pan Evaporation from 1970 to 2002. International Journal of Climatology, 24(9), 1077–1090.CrossRefGoogle Scholar
  34. Rudolf, B., H. Hauschild, W. Rueth, and U. Schneider, 1994: Terrestrial precipitation analysis: Operational method and required density of point measurements. Global Precipitations and Climate Change, Bubois and Désalmand, Eds., NATO ASI Series I, 26, Springer Verlag, Berlin, 173–186.Google Scholar
  35. Running, S. W., D. D. Baldocchi, D. P. Turner, S. T. Gower, P. S. Bakwin, and K. A. Hibbard, 1999: A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens. Environ., 70, 108–127.CrossRefGoogle Scholar
  36. Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088–3111.CrossRefGoogle Scholar
  37. Smith, T. M., and R. W. Reynolds, 2005: Improved extended reconstruction of SST (1854–1997). J. Climate, 18, 2021–2036.CrossRefGoogle Scholar
  38. Stocker, T. F., and C. C. Raible, 2005: Water cycle shift gear. Nature, 434, 830–833.CrossRefGoogle Scholar
  39. Stöckli, R., and Coauthors, 2008: Use of FLUXNET in the Community Land Model development. Journal of Geophysical Research, 113, G01025, doi: 10.1029/2007JG00562.CrossRefGoogle Scholar
  40. Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 110, D02202, doi: 10.1029/2004JD005029.CrossRefGoogle Scholar
  41. Walter, M. D., D. S. Wilks, J. Y. Parlange, and R. L. Schneider, 2004: Increasing evapotranspiration from the conterminous United States. Journal of Hydrometeorology, 5, 405–408.CrossRefGoogle Scholar
  42. Wang, J. X. L., and D. J. Gaffen, 2001: Trends in extremes of surface humidity, temperatures and summertime heat stress in China. Adv. Atmos. Sci., 18, 742–751.Google Scholar
  43. Wild, M. A., A. Ohmura, H. Gilgen, and D. Rosenfeld, 2004: On the consistency of trends in radiation and temperature records and implications for the global hydrological cycle. Geophys. Res. Lett., 31, L11201, doi: 10.1029/2003GL019188.CrossRefGoogle Scholar
  44. Xiao, J., and Coauthors, 2008: Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. Agricultural and Forest Meteorology, 148, 1827–1847.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Li Sheng (盛 黎)
    • 1
    Email author
  • Shuhua Liu (刘树华)
    • 1
  • Heping Liu
    • 2
  1. 1.Department of Atmospheric Sciences, School of PhysicsPeking UniversityBeijingChina
  2. 2.Department of Physics, Atmospheric Sciences, and GeoscienceJackson State UniversityJacksonUSA

Personalised recommendations