A regional ocean reanalysis system for coastal waters of China and adjacent seas

  • Guijun Han (韩桂军)
  • Wei Li (李 威)
  • Xuefeng Zhang (张学峰)
  • Dong Li (李 冬)
  • Zhongjie He (何忠杰)
  • Xidong Wang (王喜冬)
  • Xinrong Wu (吴新荣)
  • Ting Yu (于 婷)
  • Jirui Ma (马继瑞)
Article

Abstract

A regional ocean reanalysis system for the coastal waters of China and adjacent seas has been developed by the National Marine Data and Information Service (NMDIS). It produces a dataset package called CORA (China ocean reanalysis). The regional ocean model used is based on the Princeton Ocean Model with a generalized coordinate system (POMgcs). The model is parallelized by NMDIS with the addition of the wave breaking and tidal mixing processes into model parameterizations. Data assimilation is a sequential three-dimensional variational (3D-Var) scheme implemented within a multigrid framework. Observations include satellite remote sensing sea surface temperature (SST), altimetry sea level anomaly (SLA), and temperature/salinity profiles. The reanalysis fields of sea surface height, temperature, salinity, and currents begin with January 1986 and are currently updated every year.

Error statistics and error distributions of temperature, salinity and currents are presented as a primary evaluation of the reanalysis fields using sea level data from tidal gauges, temperature profiles, as well as the trajectories of Argo floats. Some case studies offer the opportunity to verify the evolution of certain local circulations. These evaluations show that the reanalysis data produced provide a good representation of the ocean processes and phenomena in the coastal waters of China and adjacent seas.

Key words

ocean reanalysis data coastal waters China adjacent seas sea temperature salinity currents ocean circulation 

References

  1. Carton, J. A., G. Chepurin, and X. Cao, 2000a: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30, 294–309.CrossRefGoogle Scholar
  2. Carton, J. A., G. Chepurin, and X. Cao, 2000b: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part II: Results. J. Phys. Oceanogr., 30, 311–326.CrossRefGoogle Scholar
  3. Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017.CrossRefGoogle Scholar
  4. Chen, D.-X., Eds., 1993: Marine Atlas of Bohai Bay, Yellow Sea and East China Sea(Hydrology). China Ocean Press, Beijing, 423–426. (in Chinese)Google Scholar
  5. Derber, J., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19, 1333–1347.CrossRefGoogle Scholar
  6. Ezer, T., and G. L. Mellor, 2004: A generalized coordinate ocean model and a comparison of the bottom boundary layer dynamics in terrain-following and in z-level grids. Ocean Modelling, 6, 379–403.CrossRefGoogle Scholar
  7. Han, G.-J., W. Li, Z.-J. He, K.-X. Liu, and J.-R. Ma, 2006: Assimilated tidal results of tide gauge and TOPEX/POSEIDON data over the China Seas using a variational adjoint approach with a nonlinear numerical model. Adv. Atmos. Sci., 23(3), 449–460, doi: 10.1007/s00376-006-0449-8.CrossRefGoogle Scholar
  8. He, Z.-J. G.-J. Han, W. Li, D. Li, X.-F. Zhang, X.-D. Wang, and X.-R. Wu, 2010: Experiments on assimilating of satellite data in the China seas and adjacent seas. Periodical of Ocean University of China, 40(9), 1–7. (in Chinese)Google Scholar
  9. Li, W., 2008: Numerical study of the Kuroshio front to the East of Taiwan. Ph.D. dissertation, College of Physical and Environmental Oceanography, Ocean University of China, 115pp. (in Chinese)Google Scholar
  10. Li, W., Y. Xie, Z.-J. He, G.-J. Han, K.-X. Liu, J.-R. Ma, and D. Li, 2008: Application of the multi-grid data assimilation scheme to the China Seas’ temperature forecast. J. Atmos. Oceanic Technol., 25, 2106–2116.CrossRefGoogle Scholar
  11. Lin, M.-H., C.-Z. Li, and G.-H. Fang, 1999: Dataset of Water Depth in Standard Longitude and Latitude and Datum Plane in the China Coastal Waters. Institute of Oceanology, Chinese Academy of Science, 155pp. (in Chinese)Google Scholar
  12. Matsumoto, K., T. Takanezawa, and M. Ooe, 2000: Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. J. Oceanogr., 56, 567–581.CrossRefGoogle Scholar
  13. Mellor, G., and A. F. Blumberg, 2004: Wave breaking and ocean surface layer thermal response. J. Phys. Oceanogr., 34, 693–698.CrossRefGoogle Scholar
  14. Mellor, G., S. Hakkinen, T. Ezer, and R. Patchen, 2002: A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids. Ocean Forecasting: Conceptual Basis and Applications, Pinard and Woods, Eds., Springer, 55–72.Google Scholar
  15. Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily highresolution blended analyses for sea surface temperature. J. Climate, 20(22), 5473–5496.CrossRefGoogle Scholar
  16. Stammer, D., and E. P. Chassignet, 2000: Ocean state estimation and prediction in support of oceanographic research. Oceanogr., 13, 51–56.Google Scholar
  17. Suga, T., K. Hanawa, and Y. Toba, 1989: Subtropical mode water in the 137°E section. J. Phys. Oceanogr., 19, 1605–1618.CrossRefGoogle Scholar
  18. Talley, L., D. Stammer, and I. Fukumori, 2001: Towards a WOCE synthesis. Ocean Circulation and Climate, Siedler et al., Eds., Academic Press, 525–546.Google Scholar
  19. Troccoli, A., and Coauthors, 2002: Salinity adjustments in the presence of temperature data assimilation. Mon. Wea. Rev., 130, 89–102.CrossRefGoogle Scholar
  20. Wong, A. P. S., G. C. Johnson, and W. B. Owens, 2003: Delayed-mode calibration of autonomous CTD profiling float salinity data by γ-S climatology. J. Atmos. Oceanic Technol., 20, 308–318.CrossRefGoogle Scholar
  21. Wunsch, C., and D. Stammer, 2003: Global ocean data assimilation and geoid measurements. Space Science Reviews, 108, 147–162.CrossRefGoogle Scholar
  22. Xie, Y., S. E. Koch, J. A. McGinley, S. Albers, and N. Wang, 2005: A sequential variational analysis approach for mesoscale data assimilation. 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, D. C., Amer. Meteor. Soc., 15B.7. [Available online at http://ams.confex.com/ams/pdfpapers/93468.pdf.]Google Scholar
  23. Yan, C. X., J. Zhu, and G. Q. Zhou, 2004: The roles of vertical correlation of the background covariance and T-S relation in estimation temperature and salinity profiles from surface dynamic height. J. Geophys. Res., 109, doi: 10.1029/2003JC002224.Google Scholar
  24. Zhu, J., and C. X. Yan, 2006: Nonlinear balance constraint in 3DVAR. Science in China(D), 49, 331–336.CrossRefGoogle Scholar
  25. Zhu, J., G. Q. Zhou, C. X. Yan, and X. B. You, 2006: A three-dimensional variational ocean data assimilation system: Scheme and preliminary results. Science in China(D), 49(12), 1212–1222.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Guijun Han (韩桂军)
    • 1
  • Wei Li (李 威)
    • 1
  • Xuefeng Zhang (张学峰)
    • 1
  • Dong Li (李 冬)
    • 1
  • Zhongjie He (何忠杰)
    • 1
  • Xidong Wang (王喜冬)
    • 1
  • Xinrong Wu (吴新荣)
    • 1
  • Ting Yu (于 婷)
    • 1
  • Jirui Ma (马继瑞)
    • 1
  1. 1.Key Laboratory of Marine Environmental Information Technology, National Marine Data and Information ServiceState Oceanic AdministrationTianjinChina

Personalised recommendations