Advances in Atmospheric Sciences

, Volume 28, Issue 1, pp 33–44 | Cite as

Observational evidence for poleward expansion of the Hadley circulation

  • Yongyun Hu (胡永云)
  • Chen Zhou (周 晨)
  • Jiping Liu (刘骥平)
Article

Abstract

How the Hadley circulation changes in response to global climate change and how its change impacts upon regional and global climates has generated a lot of interest in the literature in the past few years. In this paper, consistent and statistically significant poleward expansion of the Hadley circulation in the past few decades is demonstrated, using independent observational datasets as proxy measures of the Hadley circulation. Both observational outgoing longwave radiation and precipitation datasets show an annual average total poleward expansion of the Hadley cells of about 3.6° latitude. Sea level pressure from observational and reanalysis datasets show smaller magnitudes of poleward expansion, of about 1.2° latitude. Ensemble general circulation model simulations forced by observed time-varying sea surface temperatures were found to generate a total poleward expansion of about 1.23° latitude. Possible mechanisms behind the changes in the horizontal extent of the Hadley circulation are discussed.

Key words

Hadley circulation outgoing longwave radiation precipitation sea level pressure climate change 

References

  1. Adler, R. F., and Coauthors, 2003: The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J. Hydrometeor., 4, 1147–1167.CrossRefGoogle Scholar
  2. Allan, R. J., and T. J. Ansell, 2006: A new globally complete monthly historical mean sea level pressure data set (HadSLP2): 1850–2004. J. Climate, 19, 5816–5842.CrossRefGoogle Scholar
  3. Chen, J. Y., B. E. Carlson, and A. D. Del Genio, 2002: Evidence for strengthening of the tropical general circulation in the 1990s. Science, 295, 838–841.CrossRefGoogle Scholar
  4. Chen, G., and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, doi: 10.1029/2007GL031200.CrossRefGoogle Scholar
  5. Chen, G., J. Lu, and D. M. W. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 5942–5959.CrossRefGoogle Scholar
  6. Frierson, D. M. W., J. Lu, and G. Chen, 2007: The width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, doi: 10.1029/2007GL031115.CrossRefGoogle Scholar
  7. Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179.CrossRefGoogle Scholar
  8. Held, I. M., 2000: The general circulation of the atmosphere. Proc. 2000 Program in Geophysical Fluid Dynamics. Woods Hole, MA, Woods Hole Oceanographic Institute, 1–54. [Available online at http://gfd.whoi.edu.]Google Scholar
  9. Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Res., 37, 515–533.Google Scholar
  10. Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 5229–5236.CrossRefGoogle Scholar
  11. Hu, Y., and C. Zhou, 2009: Decadal changes in the Hadley circulation. Vol. 10, Advances in Geosciences, J. H. Oh, Ed., World Scientific Publishing Company, Singapore, 250pp.Google Scholar
  12. Hu, Y., K. Tung, and J. Liu, 2005: A closer comparison of early and late winter atmospheric trends in the Northern-Hemisphere. J. Climate, 18, 2924–2936.Google Scholar
  13. Hudson, R. D., M. F. Andrade, M. B. Follette, and A. D. Frolov, 2006: The total ozone field separated into meteorological regimes, Part II: Northern Hemisphere mid-latitude total ozone trends. Atmos. Chem. Phys., 6, 5183–5191.CrossRefGoogle Scholar
  14. Huffman, G. J., R. F. Adler, M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multi-satellite observations. J. Hydrometeorol., 2, 36–50.CrossRefGoogle Scholar
  15. Johanson, C. M., and Q. Fu, 2009: Hadley Cell Widening: Model Simulations versus Observations. J. Climate, 22, 2713–2725.CrossRefGoogle Scholar
  16. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  17. Kanamitsu, M., and Coauthors, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.CrossRefGoogle Scholar
  18. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 1131–1149.CrossRefGoogle Scholar
  19. Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.Google Scholar
  20. Lu, J., G. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi: 10.1029/2006GL028443.CrossRefGoogle Scholar
  21. Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 5835–5851.CrossRefGoogle Scholar
  22. Lu, J., C. Deser, and T. Reichler, 2009: The cause for the widening of the tropical belt since 1958. Geophys. Res. Lett., 36, L03803, doi: 10.1029/GL036076.CrossRefGoogle Scholar
  23. Mitas, C. M., and A. Clement, 2005: Has the Hadley cell been strengthening in recent decades? Geophys. Res. Lett., 32, L03809, doi: 10.1029/2004GL021765.CrossRefGoogle Scholar
  24. Mitas, C. M., and A. Clement, 2006: Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalyses. Geophys. Res. Lett., 33, L01810, doi: 10.1029/2005GL024406.CrossRefGoogle Scholar
  25. Seidel, D. J., and W. J. Randel, 2007: Recent widening of the tropical belt: Evidence from tropopause observations. J. Geophys. Res., 112, D20113, doi: 10.1029/2007JD008861.CrossRefGoogle Scholar
  26. Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nature Geoscience, 1, 21–24.Google Scholar
  27. Son, S.-W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the southern hemisphere westerly jet. Science, 320, 1486–1489.CrossRefGoogle Scholar
  28. Son, S.-W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36, L15705, doi: 10.1029/2009GL038671.CrossRefGoogle Scholar
  29. Uppala, S. M., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.CrossRefGoogle Scholar
  30. Wielicki, B. A., and Coauthors, 2002: Evidence for large decadal variability in the tropical mean radiative energy budget. Science, 295, 841–844.CrossRefGoogle Scholar
  31. Wong, T., B. A. Wielicki, and R. B. Lee III, 2006: Reexamination of the observed decadal variability of the earth radiation budget using altitude-corrected ERBE/ERBS nonscanner WFOV data. J. Climate, 19, 4028–4040.CrossRefGoogle Scholar
  32. Zhang, X., F. W. Zwiers, G. C. Hegerl, F. H. Lambert, N. P. Gillett, S. Solomon, P. A. Stott, and T. Nozawa, 2007: Detection of human influence on twentiethcentury precipitation trends. Nature, 448, 461–465.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yongyun Hu (胡永云)
    • 1
    • 3
  • Chen Zhou (周 晨)
    • 1
  • Jiping Liu (刘骥平)
    • 2
  1. 1.Department of Atmospheric and Oceanic Sciences, School of PhysicsPeking UniversityBeijingChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid DynamicsInstitute of Atmospheric PhysicsBeijingChina
  3. 3.Laboratory for Climate and Ocean-Atmosphere StudiesPeking UniversityBeijingChina

Personalised recommendations