Advances in Atmospheric Sciences

, Volume 28, Issue 1, pp 45–58 | Cite as

27.3-day and average 13.6-day periodic oscillations in the Earth’s rotation rate and atmospheric pressure fields due to celestial gravitation forcing

  • Guoqing Li (李国庆)Email author
  • Haifeng Zong (宗海锋)
  • Qingyun Zhang (张庆云)


Variation in length of day of the Earth (LOD, equivalent to the Earth’s rotation rate) versus change in atmospheric geopotential height fields and astronomical parameters were analyzed for the years 1962–2006. This revealed that there is a 27.3-day and an average 13.6-day periodic oscillation in LOD and atmospheric pressure fields following lunar revolution around the Earth. Accompanying the alternating change in celestial gravitation forcing on the Earth and its atmosphere, the Earth’s LOD changes from minimum to maximum, then to minimum, and the atmospheric geopotential height fields in the tropics oscillate from low to high, then to low. The 27.3-day and average 13.6-day periodic atmospheric oscillation in the tropics is proposed to be a type of strong atmospheric tide, excited by celestial gravitation forcing. A formula for a Tidal Index was derived to estimate the strength of the celestial gravitation forcing, and a high degree of correlation was found between the Tidal Index determined by astronomical parameters, LOD, and atmospheric geopotential height. The reason for the atmospheric tide is periodic departure of the lunar orbit from the celestial equator during lunar revolution around the Earth. The alternating asymmetric change in celestial gravitation forcing on the Earth and its atmosphere produces a “modulation” to the change in the Earth’s LOD and atmospheric pressure fields.

Key words

atmospheric tide intraseasonal atmospheric oscillation length of day (LOD) lunar declination astro-meteorology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, C. W., 2000: Allen’s Astrophysical Quantities. 4th ed., AIP Springer-Verlag, New York, 719pp.Google Scholar
  2. Chapman, S., and R. S. Lindzen, 1970: Atmospheric Tides: Thermal and Gravitational. D. Reidel Publishing Company, Dordrecht, Holland, 200pp.Google Scholar
  3. Dickey, J. O., T. M. Eubanks, and J. A. Steppe, 1986: High accuracy Earth rotation and atmospheric angular momentum. Earth Rotation: Solved and Unsolved Problems, A. Cazenave, Ed., D. Reidel Publishing Company, Dordrecht, Holland, 137–162.Google Scholar
  4. Eubanks, T. M., J. A. Steppe, J. O. Dickey, and P. S. Callahan, 1985: A spectral analysis of the earth’s angular momentum budget. J. Geophys. Res., 90, 5385–5404.CrossRefGoogle Scholar
  5. Forbes, J. M., M. E. Hagan, S. Miyahara, Y. Miyoshi, and X. Zhang, 2003: Diurnal nonmigrating tides in the tropical lower thermosphere. Earth Planets Space, 55 (7), 419–426.Google Scholar
  6. Hagan, M. E., and J. M. Forbes, 2003: Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., 108(2), 1062, doi: 10.1029/2002JA009466.CrossRefGoogle Scholar
  7. Hagan, M. E., J. M. Forbes, and A. Richmond, 2003: Atmospheric tides. Encyclopedia of Atmospheric Sciences, Vol. 1, 159–165.CrossRefGoogle Scholar
  8. Hide, R., and J. O. Dickey, 1991: Earth’s variable rotation. Science, 253, 629–637.CrossRefGoogle Scholar
  9. Hide, R., N. T. Birch, L. V. Morrison, D. J. Shea, and A. A. White, 1980: Atmospheric angular momentum fluctuations and changes in the length of day. Nature, 286, 114–117.CrossRefGoogle Scholar
  10. Huang, Z., and L. Huang, 2005: Tidal Theory and Calculation. Ocean University Press, Qingdao, China, 239pp. (in Chinese)Google Scholar
  11. Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004: The Madden-Julian Oscillation and its impact on Northern Hemisphere weather predictability. Mon. Wea. Rev., 132, 1462–1471.CrossRefGoogle Scholar
  12. Kistler, R., E. and Coauthors, 2001: The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247–267.CrossRefGoogle Scholar
  13. Lambeck, K., 1980: The Earth’s Variable Rotation: Geophysical Causes and Consequences. Cambridge University Press, Cambridge, 449pp.CrossRefGoogle Scholar
  14. Li, C. Y., P. L. Wu, and Q. Chang, 1990: Some characteristics of 30-50-day oscillation in northern hemisphere atmospheric circulation. Science in China (B), 20(7), 764–774. (in Chinese)Google Scholar
  15. Li, G., 2005: 27.3-day and 13.6-day atmospheric tide and lunar forcing on atmospheric circulation. Adv. Atmos. Sci., 22(3), 359–374.CrossRefGoogle Scholar
  16. Li, G., and H. Zong, 2007: 27.3-day and 13.6-day atmospheric tide. Science in China (D), 50(9), 1380–1395.Google Scholar
  17. Lindzen, R. S., 2005: Dynamics in Atmospheric Physics. Cambridge University Press, Cambridge, 310pp.Google Scholar
  18. Rosen, R. D., and D. A. Salstein, 1983: Variations in atmospheric angular momentum on global and regional scales and the length of day. J. Geophys. Res., 88, 5451–5470.CrossRefGoogle Scholar
  19. Waliser, D. E., R. Murtugudde, and L. E. Lucas, 2004: Indo-Pacific Ocean Response to atmospheric intraseasonal variability. Part 2: Boreal summer and the intraseasonal oscillation. J. Geophys. Res., 109, C030301–26.CrossRefGoogle Scholar
  20. Yoder, C. F., J. G. Williams, and M. E. Parke, 1981: Tidal variations of earth rotation. J. Geophys. Res., 86(B2), 881–891.CrossRefGoogle Scholar
  21. Zheng, D., S. Luo, and G. Song, 1989: Interannual change in earth’s rotation, El Nino event and atmospheric angular momentum. Science in China (B), 28(3), 323–337. (in Chinese)Google Scholar
  22. Zhou, Y., D. Zheng, N. Yu, and X. Liao, 2001: Moment of Earth rotation and activities of atmosphere and ocean. Chinese Science Bulletin, 46, 881–888.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Guoqing Li (李国庆)
    • 1
    Email author
  • Haifeng Zong (宗海锋)
    • 1
  • Qingyun Zhang (张庆云)
    • 1
  1. 1.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations