Impact of spin-up forcing on vegetation states simulated by a dynamic global vegetation model coupled with a land surface model

  • Fang Li (李 芳)
  • Xiaodong Zeng (曾晓东)
  • Xiang Song (宋 翔)
  • Dongxiao Tian (田东晓)
  • Pu Shao (邵 璞)
  • Dongling Zhang (张东凌)
Article

Abstract

A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the atmospheric forcing used to drive the coupled model to equilibrium solutions in the spin-up process, varies across earlier studies. In the present study, the impact of the spin-up forcing in the initialization stage on the fractional coverages (FCs) of plant functional type (PFT) in the subsequent simulation stage are assessed in seven classic climate regions by a modified Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM). Results show that the impact of spin-up forcing is considerable in all regions except the tropical rainforest climate region (TR) and the wet temperate climate region (WM). In the tropical monsoon climate region (TM), the TR and TM transition region (TR-TM), the dry temperate climate region (DM), the highland climate region (H), and the boreal forest climate region (BF), where FCs are affected by climate non-negligibly, the discrepancies in initial FCs, which represent long-term cumulative response of vegetation to different climate anomalies, are large. Moreover, the large discrepancies in initial FCs usually decay slowly because there are trees or shrubs in the five regions. The intrinsic growth timescales of FCs for tree PFTs and shrub PFTs are long, and the variation of FCs of tree PFTs or shrub PFTs can affect that of grass PFTs.

Key words

vegetation initial condition spin-up forcing Dynamic Global Vegetation Model Land Surface Model 

References

  1. Arora, V. K., 2003: Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models. Agricultural and Forest Meteorology, 118, 21–47.CrossRefGoogle Scholar
  2. Betts, R. A., P. M. Cox, S. E. Lee, and F. I. Woodward, 1997: Contrasting physiological and structural feedbacks in climate change simulations. Nature, 387, 796–799.CrossRefGoogle Scholar
  3. Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444–1449.CrossRefGoogle Scholar
  4. Bonan, G. B., and S. Levis, 2006: Evaluating aspects of the community land and atmosphere models (CLM3 and CAM3) using a dynamic global vegetation model. J. Climate, 19, 2290–2301.CrossRefGoogle Scholar
  5. Bonan, G. B., S. Levis, L. Kergoat, and K. W. Oleson, 2002a: Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Global Biogeochemical Cycles, 16, 1–23.CrossRefGoogle Scholar
  6. Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. E. Dickinson, and Z. L. Yang, 2002b: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15, 3123–3149.CrossRefGoogle Scholar
  7. Bonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K. W. Oleson, 2003: A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Global Change Biology, 9, 1543–1566.CrossRefGoogle Scholar
  8. Brovkin, V., S. Levis, M. F. Loutre, M. Crucifix, M. Claussen, A. Ganopolski, C. Kubatzki, and V. Petoukhov, 2003: Stability analysis of the climatevegetation system in the northern high latitudes. Climate Change, 57, 119–138.CrossRefGoogle Scholar
  9. Charney, J., 1975: Dynamics of deserts and droughts in the Sahel. Quarterly Journal of Royal Meteorological Society, 101, 193–202.CrossRefGoogle Scholar
  10. Chen, M, 2008: Couple the common land model with the dynamic global vegetation model. M. S. thesis, Institute of Atmospheric physics, Chinese Academy of Sciences, 43pp. (in Chinese)Google Scholar
  11. Cook, B. I., G. B. Bonan, S. Levis, and E. Epstein, 2008: Rapid vegetation responses and feedbacks amplify climate model response to snow cover changes. Climate Dyn., 30, 391–406.CrossRefGoogle Scholar
  12. Cowling, S., and Coauthors, 2004: Contrasting simulated past and future responses of Amazonian forest to atmospheric change. Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 539–547.CrossRefGoogle Scholar
  13. Cox, P., 2001: Description of the “TRIFFID” Dynamic Global Vegetation Model. Hadley Center Techical Note 24, 16pp.Google Scholar
  14. Cramer, W., and Coauthors, 2001: Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 7, 357–373.CrossRefGoogle Scholar
  15. Dai, Y., and Coauthors, 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1023.CrossRefGoogle Scholar
  16. Dai, Y., R. E. Dickinson, and Y. P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 2281–2299.CrossRefGoogle Scholar
  17. Essery, R., M. Best, R. Betts, P. M. Cox, and C. Taylor, 2001: Explicit representation of subgrid heterogeneity in a GCM land-surface scheme. Climate Dyn., 4, 530–543.Google Scholar
  18. Fisher, R., cited 2008: Title of subordinate document. ED-JULES progress. [Available online at http://www.jchmr.org/jules/pdf/2008Fisher ED.pdf.]
  19. Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10, 603–628.CrossRefGoogle Scholar
  20. Fu, B. J., and Coauthors, 2001: Theory and Application of Landscape Ecology. Science Press, Beijing, China, 303pp. (in Chinese)Google Scholar
  21. Hahmann, A. N., and R. E. Dickinson, 1997: RCCM2-BATS model over tropical South America: Applications to tropical deforestation. J. Climate, 10, 1944–1964.CrossRefGoogle Scholar
  22. Hughes, J. K, P. J. Valdes, and R. A. Betts, 2004: Dynamical properties of the TRIFFID dynamic global vegetation model. Hadley Centre Technical Note 56, 23pp.Google Scholar
  23. Hughes, J. K., P. J. Valdes, and R. Betts, 2006: Dynamics of a global-scale vegetation model. Ecological Modelling, 198, 452–462.CrossRefGoogle Scholar
  24. Jarlan, L., Y. M. Tourre, E. Mougin, N. Philippon, P. Mazzega, 2005: Dominant patterns of AVHRR NDVI interannual variability over the Sahel and linkages with key climate signals (1982–2003). Geophys. Res. Lett., 32, doi: 10.1029/2004GL021841.Google Scholar
  25. Kim, Y., and G. Wang, 2005: Modeling seasonal vegetation variation and its validation against Moderate Resolution Imaging Spectroradiometer (MODIS) observations over North America. J. Geophys. Res., 110, doi: 10.1029/2004JD005436.Google Scholar
  26. Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 19, doi: 10.1029/2003GB002199.Google Scholar
  27. Köhler, P., F. Joos, S. Gerber, and R. Knutti, 2005: Simulated changes in vegetation distribution, land carbon storage, and atmospheric CO2 in response to a collapse of the North Atlantic thermohaline circulation. Climate Dyn., 25, 689–708.CrossRefGoogle Scholar
  28. Kucharik, C. J., and Coauthors, 2000: Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance and vegetation structure. Global Biogeochemical Cycles, 14, 795–825.CrossRefGoogle Scholar
  29. Lawrence, D., and J. Slingo, 2004: An annual cycle of vegetation in a GCM. Part I: implementation and impact on evaporation. Climate Dyn., 22, 87–105.Google Scholar
  30. Levis, S., G. B. Bonan, M. Vertenstein, and K. W. Oleson, 2004a: The Community Land Model’s dynamic global vegetation model (CLM-DGVM): Technical description and user’s guide. NCAR Techical Note TN-45459+IA, 50pp.Google Scholar
  31. Levis, S., G. B. Bonan, and C. Bonfils, 2004b: Soil feedback drives the Mid-Holocene North African monsoon northward in fully coupled CCSM2 simulations with a dynamic vegetation model. Climate Dyn., 23 doi: 10.1007/s00382-004-0477-y.Google Scholar
  32. Li, Y., M. Cao, and K. Li, 2006: Climate-induced changes in the vegetation pattern of China in the 21st centrury. Ecological Research, 21, 912–919.CrossRefGoogle Scholar
  33. Liang, M. L., and Z. H. Xie, 2008: Improving the vegetation dynamic simulation in a land surface model by using a statistical-dynamic canopy interception scheme. Adv. Atmo. Sci., 25, 610–618.CrossRefGoogle Scholar
  34. Liu, S. F., 2007: Skill validation of an atmosphere-landvegetation coupled model and the analysis of its coupling strength. Ph. D. dissertation, Institute of Atmospheric physics, Chinese Academy of Sciences, 185pp.Google Scholar
  35. Morales, P., H. Hickler, D. P. Rowell, B. Smith, and M. T. Sykes, 2007: Changes in European ecosystem productivity and carbon balance driven by regional climate model output. Global Change Biology, 13, 108–122.CrossRefGoogle Scholar
  36. Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi: 10.1029/2007JG000563.CrossRefGoogle Scholar
  37. Osborne, T. M., D. M. Lawrence, J. M. Slingo, A. J. Challinor, and T. R. Wheeler, 2004: Influence of vegetation on the local climate and hydrology in the tropics: Sensitivity to soil parameters. Climate Dyn., 23, 45–61.CrossRefGoogle Scholar
  38. Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4, 439–473.CrossRefGoogle Scholar
  39. Pielke, R. A., R. Avissar, M. Raupach, A. J. Dolman, X. Zeng, and A. S. Denning 1998: Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Global Change Biology., 4, 461–475.CrossRefGoogle Scholar
  40. Qian, T., A. Dai, K. E. Trenberth, and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations. Journal of Hydrometeorology, 7, 953–975.CrossRefGoogle Scholar
  41. Rodell, M., P. R. Houser, A. A. Berg, and J. S. Famiglieti, 2005: Evaluation of 10 methods for initializating a land surface model. Journal of Hydrometeorology, 6, 146–155.CrossRefGoogle Scholar
  42. Sato, H., A. Itoh, and T. Kohyama, 2007: SEIB-DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach. Ecological Modelling, 200, 279–307.CrossRefGoogle Scholar
  43. Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161–185, doi: 10.1046/j.1365-2486.2003.00569.x.CrossRefGoogle Scholar
  44. Xue, Y., 1996: The impact of desertification in the Mongolian and the Inner Mongolian grassland on the regional climate. J. Climate, 9, 2173–2189.CrossRefGoogle Scholar
  45. Yang, Z. L., R. E. Dickinson, A. Henderson-Sellers, and A. J. Pitman, 1995: Preliminary study of spin-up processes in land surface models with the first stage of project for intercomparison of Land Surface Parameterization Schemes Phase 1(a). J. Geophys. Res., 100, 16553–16578.CrossRefGoogle Scholar
  46. Zeng, N., J. Neelin, K. M. Lau, and C. Tucker, 1999: Enhancement of interdecedal climate variability in the Sahel by vegetation interaction. Science, 286, 1537–1540.CrossRefGoogle Scholar
  47. Zeng, N., A. Mariotti, and P. Wetzel, 2005: Terrestrial mechanisms of interannual CO2 variability. Global Biogeochemical Cycles, 19, doi: 10.1029/2004-GB002273.Google Scholar
  48. Zeng, Q. C., and Coauthors, 2008: Research on the earth system dynamic model and some related numerical simulations. Chinese J. Atmos. Sci., 32, 653–690. (in Chinese)Google Scholar
  49. Zeng, X., 2001: Global vegetation root distribution for land modeling. Journal of Hydrometeorology, 2, 525–530.CrossRefGoogle Scholar
  50. Zeng, X. D., X. Zeng, and M. Barlage, 2008: Growing temperate shrubs over arid and semiarid regions in the NCAR Dynamic Global Vegetation Model (CLM-DGVM). Global Biogeochemical Cycles, 22, doi: 10.1029/2007GB003014.Google Scholar
  51. Zeng, X. D., 2010: Evaluating the dependence of vegetation on climate in an improved dynamic global vegetation model (CLM3.0-DGVM). Adv. Atmos. Sci., 27, 977–991, doi: 10.1007/s00376-009-9186-0.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fang Li (李 芳)
    • 1
  • Xiaodong Zeng (曾晓东)
    • 1
  • Xiang Song (宋 翔)
    • 1
    • 2
  • Dongxiao Tian (田东晓)
    • 1
    • 2
  • Pu Shao (邵 璞)
    • 1
    • 2
  • Dongling Zhang (张东凌)
    • 1
  1. 1.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations