Advances in Atmospheric Sciences

, Volume 27, Issue 5, pp 1003–1013 | Cite as

Is model parameter error related to a significant spring predictability barrier for El Niño events? Results from a theoretical model

Article

Abstract

Within a theoretical ENSO model, the authors investigated whether or not the errors superimposed on model parameters could cause a significant “spring predictability barrier” (SPB) for El Niño events. First, sensitivity experiments were respectively performed to the air-sea coupling parameter, α and the thermocline effect coefficient µ. The results showed that the uncertainties superimposed on each of the two parameters did not exhibit an obvious season-dependent evolution; furthermore, the uncertainties caused a very small prediction error and consequently failed to yield a significant SPB. Subsequently, the conditional nonlinear optimal perturbation (CNOP) approach was used to study the effect of the optimal mode (CNOP-P) of the uncertainties of the two parameters on the SPB and to demonstrate that the CNOP-P errors neither presented a unified season-dependent evolution for different El Niño events nor caused a large prediction error, and therefore did not cause a significant SPB. The parameter errors played only a trivial role in yielding a significant SPB. To further validate this conclusion, the authors investigated the effect of the optimal combined mode (i.e. CNOP error) of initial and model errors on SPB. The results illustrated that the CNOP errors tended to have a significant season-dependent evolution, with the largest error growth rate in the spring, and yielded a large prediction error, inducing a significant SPB. The inference, therefore, is that initial errors, rather than model parameter errors, may be the dominant source of uncertainties that cause a significant SPB for El Niño events. These results indicate that the ability to forecast ENSO could be greatly increased by improving the initialization of the forecast model.

Key words

ENSO predictability optimal perturbation error growth model parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, D., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. J. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733–736.CrossRefGoogle Scholar
  2. Duan, W. S., 2003: Applications of nonlinear optimization method to the studies of ENSO predictability. Ph. D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 111pp. (in Chinese)Google Scholar
  3. Duan, W. S., M. Mu, and B. Wang, 2004: Conditional nonlinear optimal perturbation as the optimal precursors for ENSO events. J. Geophys. Res., 109, D23105.CrossRefGoogle Scholar
  4. Duan, W. S., X. Liu, K. Y. Zhu, and M. Mu, 2009: Exploring initial errors that cause a significant spring predictability barrier for El Niño events. J. Geophys. Res., 114, C04022, doi: 10.1029/2008JC004925.CrossRefGoogle Scholar
  5. Flügel, M., and P. Chang, 1998: Does the predictability of ENSO depend on the seasonal cycle? J. Atmos. Sci., 55, 3230–3243.CrossRefGoogle Scholar
  6. Garay, J. Z., 2004: Influence of stochastic forcing on ENSO prediction. J. Geophys. Res., 109, C1107.Google Scholar
  7. Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean-atmosphere models. Climate Dyn., 31, 647–664.CrossRefGoogle Scholar
  8. Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103, 14357–14393.CrossRefGoogle Scholar
  9. Liu, Z. Y., 2002: A simple model study of ENSO suppression by external periodic forcing. J. Atmos. Sci., 15, 1088–1098.Google Scholar
  10. Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122, 1405–1446.CrossRefGoogle Scholar
  11. Mu, M., W. S. Duan, and J. C. Wang, 2002: Predictability problems in numerical weather and climate prediction. Adv. Atmos. Sci., 19, 191–205.CrossRefGoogle Scholar
  12. Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes in Geophysics, 10, 493–501.CrossRefGoogle Scholar
  13. Mu, M., W. S. Duan, and B. Wang, 2007a: Seasondependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model. J. Geophys. Res., 112, D10113, doi: 10.1029/2005JD006981.CrossRefGoogle Scholar
  14. Mu, M., H. Xu, and W. S. Duan, 2007b: A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model. Geophys. Res. Lett., 34, L03709, doi: 10.1029/2006GL-27412.CrossRefGoogle Scholar
  15. Mu, M., W. S. Duan, Q. Wang, and Y. M. Liu, 2010: An extension of conditional nonlinear optimal perturbation. Nonlinear Processes in Geophysics, 17, 211–220.CrossRefGoogle Scholar
  16. Samelson, R. G., and E. Tziperman, 2001: Instability of the chaotic ENSO: The growth-phase predictability barrier. J. Atmos. Sci., 58, 3613–3625.CrossRefGoogle Scholar
  17. Tang, Y., Z. Deng, X. Zhou, Y. Cheng, and D. Chen, 2008: Interdecadal variation of ENSO predictability in multiple models. J. Climate, 21, 4811–4833.CrossRefGoogle Scholar
  18. Wang, B., and Z. Fang, 1996: Chaotic oscillation of tropical climate: A dynamic system theory for ENSO. J. Atmos. Sci., 53, 2786–2802.CrossRefGoogle Scholar
  19. Wang, C., and J. Picaut, 2004: Understanding ENSO physics—A review. Earth Climate: The Ocean-Atmosphere Interaction, Geophysical Monograph Series, Vol. 147, American Geophysical Union, 21–48.Google Scholar
  20. Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–926.CrossRefGoogle Scholar
  21. William, P. D., 2005: Modelling climate change: the role of unresolved processes. Philosophical Transactions of the Roual Society, 363, 2931–2946.Google Scholar
  22. Wu, D. H., and D. L. Anderson, 1993: ENSO variability and external impacts. J. Climate, 6, 1703–1717.CrossRefGoogle Scholar
  23. Yu, Y. S., W. S. Duan, H. Xu, and M. Mu, 2009: Dynamics of nonlinear error growth and seasondependent predictability of El Niño events in the Zebiak-Cane model. Quart. J. Roy. Meteor. Soc., doi: 10.1002/qj.526.Google Scholar
  24. Zebiak, S. E., and M. A. Cane, 1987: A model El Niño Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.CrossRefGoogle Scholar
  25. Zhang, L., M. Flugel, and P. Chang, 2003: Testing the stochastic mechanism for low-frequency variations in ENSO predictability. Geophys. Res. Lett., 12, doi: 10.1029/2003GL017505.Google Scholar
  26. Zheng, F., H. Wang, and J. Zhu, 2009: ENSO ensemble prediction: initial condition perturbations vs. model parameter perturbations. Chinese Science Bulletin, 54(14), 2516–2523.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of the Chinese Academy of ScienceBeijingChina

Personalised recommendations