Advances in Atmospheric Sciences

, Volume 27, Issue 3, pp 605–620 | Cite as

Analysis on the interaction between turbulence and secondary circulation of the surface layer at Jinta oasis in summer

  • Bo Han (韩 博)
  • Shihua Lü (吕世华)
  • Yinhuan Ao (奥银焕)


The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer. It is found that when the mean horizontal flow was stronger, the turbulent kinetic energy was increased at all levels, as well as the downward mean wind at the middle level. Since the mean vertical flow on the top and bottom were both negligible at that time, there was a secondary circulation with convergence in the upper half and divergence in the lower half of the column. After consideration of energy conversion, it was found that the interaction between turbulence and the secondary circulation caused the intensification of each other. The interaction reflected positive feedback between turbulence and the vertical shear of the mean flow. Turbulent sensible and latent heat flux anomaly were also analyzed. The results show that in both daytime and at night, when the surface layer turbulence was intensified as a result of strengthened mean flow, the sensible heat flux was decreased while the latent heat flux was increased. Both anomalous fluxes contributed to the cold island effect and the moisture island effect of the oasis.

Key words

heterogeneous atmospheric boundary layer turbulent kinetic energy equations energy conversion secondary circulation oasis effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avissar, R., and T. Schmidt, 1998: An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci. 55, 2666–2689.CrossRefGoogle Scholar
  2. Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189.CrossRefGoogle Scholar
  3. Chen, J., Y. Hu, and L. Zhang, 2007: Principle of cross coupling between vertical heat turbulent transport and vertical velocity and determination of cross coupling coefficient. Adv. Atmos. Sci., 24, 89–100, doi: 10.1007/s00376-007-0089-7.CrossRefGoogle Scholar
  4. Cheng, Y., V. M. Canuto, and A. M. Howard, 2002: An improved model for the turbulent PBL. J. Atmos. Sci., 59, 1550–1565.CrossRefGoogle Scholar
  5. Chu, P. C., S. Lu, and Y. Chen, 2005: A numerical modeling study on desert oasis self-supporting mechanisms. J. Hydrol., 312, 256–276.CrossRefGoogle Scholar
  6. Dyer, A. J., and E. F. Bradley, 1982: An alternative analysis of flux-gradient relationship in the 1976 ITCE. Bound.-Layer Meteor., 22, 3–19.CrossRefGoogle Scholar
  7. Dyer, A. J., and B. B. Hicks, 1982: Kolmogoroff constants at the 1976 ITCE. Bound.-Layer Meteor., 22, 137–150.CrossRefGoogle Scholar
  8. Dyer, A. J., and Coauthors, 1982: An International Turbulence Comparison Experiment (ITCE 1976). Bound.-Layer Meteor., 24, 181–209.CrossRefGoogle Scholar
  9. Elperin, T., N. Kleeorin, and I. Rogachevskii, 2002: Formation of large-scale semi-organized structures in turbulent convection. Phys. Rev. (E), 66(066305), 1–15.Google Scholar
  10. Foken, T., 2006: 50 years of Monin-Obukhov similarity theory. Bound.-Layer Meteor., 119, 431–447.CrossRefGoogle Scholar
  11. Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 310pp.Google Scholar
  12. Giorgi, F., and R. Avissar, 1997: Representation of heterogeneity effects in earth system modeling: Experience from land surface modeling. Rev. Geophys. 35, 413–438.CrossRefGoogle Scholar
  13. Gao, Y., Z. Qu, Q. Liu, and T. Cao, 1966: Characteristics and formation of hot-dry winds in He-Xi region. Chinese Science Bulletin, 13, 616–619.(in Chinese)Google Scholar
  14. Hess, G. D., B. B. Hicks, and T. Yamada, 1981: The Impact of the Wangara Experiment. Bound.-Layer Meteor., 20, 135–174.CrossRefGoogle Scholar
  15. Hicks, B. B., 1986: Book Review: International Turbulence Comparison Experiment ITCE 1981. Bound.-Layer Meteor., 34, 417–419.CrossRefGoogle Scholar
  16. Högström, U., 1988: Non-dimensional wind and temperature profiles in the atmospheric surface layer: A reevaluation. Bound.-Layer Meteor., 42, 55–78.CrossRefGoogle Scholar
  17. Horst, T. W., 1999: The footprint for estimation of atmospheric-surface exchange fluxes by profile techniques. Bound.-Layer Meteor., 90, 171–188.CrossRefGoogle Scholar
  18. Hu, Y., 1992: Progressed in field observation experiments about land-surface process, Advances in Earth Sciences, 18(3), 280–294. (in Chinese)Google Scholar
  19. Hu, Y., Y. Gao, J. Wang, G. Ji, Z. Shen, L. Cheng, J. Cheng, and S. Li, 1994: Some achievements in scientific research during HEIFE. Plateau Meteorology, 13(3), 225–236. (in Chinese)Google Scholar
  20. Kaimal, J. C., and J. C. Wyngaard, 1990: The Kansas and Minnesota experiment. Bound.-Layer Meteor., 50, 31–47.CrossRefGoogle Scholar
  21. Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Cote, 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563–589.CrossRefGoogle Scholar
  22. Lettau, H., 1990: The O’Neill experiment of 1953. Bound.-Layer Meteor., 50, 1–9.CrossRefGoogle Scholar
  23. Liu, S., Y. Hu, F. Hu, F. Liang, J. Wang, and H. Liu, 2005: Numerical simulation of land-atmosphere interaction and oasis effect over oasis-desert. Chinese Journal of Geophysics, 48, 1019–1027. (in Chinese)Google Scholar
  24. Liu, S., S. Liu, and B. Tan, 1996: Chaos, fractal and self-similarity. Nonlinear Atmosphere Dynamics, National Defense Industry Press, 127–161. (in Chinese)Google Scholar
  25. Lu, S., L. Shang, L. Liang, and S. Luo, 2005: Numerical Simulation of Microclimate Effect in Jinta Oasis. Plateau Meteorology, 24, 649–655. (in Chinese)Google Scholar
  26. Mason, P. J., 1988: The formation of areally-averaged roughness lengths. Quart. J. Roy. Meteor. Soc., 114, 399–420.CrossRefGoogle Scholar
  27. Miyake, M., R. W. Stewart, R. W. Burling, L. R. Tsvang, B. M. Koprov, and O. A. Kuznetzov, 1971: Comparison of acoustic instruments in an atmospheric flow over water. Bound.-Layer Meteor., 2, 228–245.CrossRefGoogle Scholar
  28. Monin, A. S., and S. S. Zilitinkevich, 1974: Similarity theory and resistance laws for the planetary boundary layer. Bound.-Layer Meteor., 7, 391–397.CrossRefGoogle Scholar
  29. Niu, G., Z. Hong, and S. Sun, 1997: Numerical simulations on mesoscale fluxes generated by desert and oasis heterogeneous distributions. Chinese J. Atmos. Sci., 21(4), 385–395. (in Chinese)Google Scholar
  30. Pan, X., and J. Chao, 2003: Theory of stability, and regulation and control of ecological system in oasis. Global and Planetary Change, 37, 287–295.CrossRefGoogle Scholar
  31. Pahlow, M., M. B. Parlange, and F. Porté-Agel, 2001: On Monin-Obukhov similarity in the stable atmospheric boundary layer. Bound.-Layer Meteor., 99, 225–248.CrossRefGoogle Scholar
  32. Raasch, S., and G. Harbusch, 2001: An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using large-eddy simulation. Bound.-Layer Meteor., 101, 31–59.CrossRefGoogle Scholar
  33. Roy, S. B., and R. Avissar, 2002: Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res., 107(D20), LBA4-1–LBA4-12.Google Scholar
  34. Sorbjan, Z., 1988: Local similarity in the convective boundary layer. Bound.-Layer Meteor., 45, 237–250.CrossRefGoogle Scholar
  35. Su, C., Y. Hu, Y. Zhang, and G. Wei, 1987: The microclimate character and “cold island effect” over the oasis in Hexi region. Chinese J. Atmos. Sci., 11(4), 390–396. (in Chinese)Google Scholar
  36. Swinbank, W. C., and A. J. Dyer, 1968: An experimental study on mircrometeorology. Quart. J. Roy. Meteor. Soc., 93, 494–500.CrossRefGoogle Scholar
  37. Tsvang, L. R., B. M. Kaprov, S. L. Zubkovskij, A. J. Dyer, B. B. Hicks, M. Miyake, R.W. Stewart, and J. W. McDonald, 1973: A comparison of turbulence measurements by different instuments; Tsimlyansk Field Experiment 1970. Bound.-Layer Meteor., 3, 499–521.CrossRefGoogle Scholar
  38. Tsvang, L. R., and Coauthors, 1985: International turbulence comparison experiment (ITCE-81). Bound.-Layer Meteor., 31, 325–348.CrossRefGoogle Scholar
  39. Wang, J., 1999: Land surface process experiments and interaction study in China—from HEIFE to IMGRASS and GAME TIBET/TIPEX. Plateau Meteorology, 18(3), 280–294. (in Chinese)Google Scholar
  40. Wen, L., S. Lu, S. Chen, X. Meng, Y. Zhang, Y. Ao, and S. Li, 2007: Characteristics of radiation over oasis under different soil moisture conditions in clear days summer. Acta Energiae Solaris Sinica, 28(5), 567–572. (in Chinese)Google Scholar
  41. Weng, W. S., and P. A. Taylor, 2003: On modeling the one-dimensional atmospheric boundary layer. Bound.-Layer Meteor., 107, 371–400.CrossRefGoogle Scholar
  42. Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapor transfer. Quart. J. Roy. Meteor. Soc., 106, 85–100.CrossRefGoogle Scholar
  43. Wyngaard, J. C., and O. R. Cote, 1971: The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci., 28, 190–201.CrossRefGoogle Scholar
  44. Wyngaard, J. C., O. R. Coté, and Y. Izumi, 1971: Local free convection, similarity, and the budgets of shear stress and heat flux. J. Atmos. Sci., 28(7), 1171–1182.CrossRefGoogle Scholar
  45. Wyngaard, J. C., and O. R. Coté, 1972: Cospectral similarity in the atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 98, 590–603.CrossRefGoogle Scholar
  46. Wyngaard, J. C., S. P. S. Arya, and O. R. Coté, 1974: Some aspects of the structure of convective planetary boundary layer. J. Atmos. Sci., 31, 747–754.CrossRefGoogle Scholar
  47. Zilitinkevich, S. S., 1974: Similarity theory for the planetary boundary layer of time-dependent height. J. Atmos. Sci., 31, 1449–1452.CrossRefGoogle Scholar
  48. Zilitinkevich, S. S., T. Elperin, N. Kleeorin, and I. Rogachevskii, 2007: Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Bound.-Layer Meteor., 125, 167–191.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bo Han (韩 博)
    • 1
  • Shihua Lü (吕世华)
    • 1
  • Yinhuan Ao (奥银焕)
    • 1
  1. 1.Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina

Personalised recommendations