Advertisement

Advances in Atmospheric Sciences

, Volume 26, Issue 6, pp 1071–1080 | Cite as

A note on reviving the Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) dataset

  • Chung-Lin Shie
  • Long S. Chiu
  • Robert Adler
  • Eric Nelkin
  • I. -I. Lin
  • Pingping Xie
  • Feng-Chin Wang
  • R. Chokngamwong
  • William Olson
  • D. Allen Chu
Article

Abstract

Accurate sea surface flux measurements are crucial for understanding the global water and energy cycles. The oceanic evaporation, which is a major component of the global oceanic fresh water flux, is useful for predicting oceanic circulation and transport. The global Goddard Satellite-based Surface Turbulent Fluxes Version-2 (GSSTF2; July 1987–December 2000) dateset that was officially released in 2001 has been widely used by scientific community for global energy and water cycle research, and regional and short period data analyses. We have recently been funded by NASA to resume processing the GSSTF dataset with an objective of continually producing a uniform dataset of sea surface turbulent fluxes, derived from remote sensing data. The dataset is to be reprocessed and brought up-to-date (GSSTF2b) using improved input datasets such as a recently upgraded NCEP/DOE sea surface temperature reanalysis, and an upgraded surface wind and microwave brightness temperature V6 dataset (Version 6) from the Special Sensor Microwave Imager (SSM/I) produced by Remote Sensing Systems (RSS). A second new product (GSSTF3) is further proposed with a finer temporal (12-h) and spatial (0.25° × 0.25°) resolution. GSSTF2b (July 1987–December 2008) and GSSTF3 (July 1999–December 2009) will be released for the research community to use by late 2009 and early 2011, respectively.

Key words

surface turbulent fluxes global oceanic satellite-based 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreas, E. L., 1992: Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res., 97, 11429–11441.CrossRefGoogle Scholar
  2. Andreas, E. L., J. B. Edson, E. C. Monahan, M. P. Rouault, and S. D. Smith, 1995: The spray contribution to net evaporation from the sea: A review of recent progress. Bound.-Layer Meteor., 72, 3–52.CrossRefGoogle Scholar
  3. Atlas, R., R. N. Hoffman, S. C. Bloom, J. C. Jusem, and J. Ardizzone, 1996: A multiyear global surface wind velocity dataset using SSM/I wind observations. Bull. Amer. Meteor. Soc., 77, 869–882.CrossRefGoogle Scholar
  4. Black, P. G., E. A. D’Asaro, W. M. Drennan, J. R. French, P. P. Niiler, T. B. Sanford, E. J. Terrill, E. J. Walsh, and J. A. Zhang, 2007: Air-sea exchanges in hurricanes. Bull. Amer. Meteor. Soc., 88, 357–374.CrossRefGoogle Scholar
  5. Brunke, M. A., C. W. Fairall, X. Zeng, L. Eymard, and J. A. Curry, 2003: Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J. Climate, 16, 619–635.CrossRefGoogle Scholar
  6. Bourras, D., 2005: Comparison of five satellite derived latent heat flux products to moored buoy data. N.A.I. (Notes of IPSL Instrumental Activities), 15pp.Google Scholar
  7. Bourras, D., L. Eymard, and W. T. Liu, 2002: A neural network to estimate the latent heat flux over oceans from satellite observations. Int. J. Remote Sens., 23, 2405–2423.CrossRefGoogle Scholar
  8. Chiu, L. S., and Y. Xing, 2004: Modes of interannual variability of oceanic evaporation observed from GSSTF2, Gayana: International Journal of Biodiversity, Oceanology and Conservation, 68(2), 115–120.Google Scholar
  9. Chou, S.-H., 1993: A comparison of airborne eddy correlation and bulk aerodynamic methods for ocean-air turbulent fluxes during cold-air outbreaks. Bound.-Layer Meteor., 64, 75–100.CrossRefGoogle Scholar
  10. Chou, S.-H., R. M. Atlas, C-L. Shie. and J. Ardizzone, 1995: Estimates of surface humidity and latent heat fluxes over oceans from SSM/I data. Mon. Wea. Rev., 123, 2405–2425.CrossRefGoogle Scholar
  11. Chou, S.-H., C.-L. Shie, R. M. Atlas, and J. Ardizzone, 1997: Air-sea fluxes retrieved from special sensor microwave imager data. J. Geophys. Res., 102, 12705–12726.CrossRefGoogle Scholar
  12. Chou, S.-H., C.-L. Shie, R. Atlas, and J. Ardizzone, 2000: The Goddard Satellite-Based Surface Turbulent Fluxes Dataset-Version 1 (GSSTF 1.0) [global (grid of 2° × 2.5°) daily air-sea surface fluxes from July 1987 to December 1994]. [Available online at http://disc.sci.gsfc.nasa.gov/precipitation/gsstf1.0.shtml.]
  13. Chou, S.-H., E. Nelkin, J. Ardizzone, R. Atlas, and C.-L. Shie, 2001: The Goddard Satellite-Based Surface Turbulent Fluxes Dataset-Version 2 (GSSTF 2.0) [global (grid of 1° × 1°) daily air-sea surface fluxes from July 1987 to December 2000]. [Available online at http://disc.gsfc.nasa.gov/precipitation/gsstf2.0.shtml.]
  14. Chou, S.-H., E. Nelkin, J. Ardizzone, R. M. Atlas, and C.-L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrieval, version 2 (GSSTF2). J. Climate, 16, 3256–3273.CrossRefGoogle Scholar
  15. Chou, S.-H., E. Nelkin, J. Ardizzone, and R. Atlas, 2004: A comparison of latent heat fluxes over global oceans for four flux products, J. Climate, 17, 3973–3989.CrossRefGoogle Scholar
  16. Curry, J. A., and Coauthors, 1999: High-resolution satellite-derived dataset of the surface fluxes of heat, freshwater, and momentum for the TOGA COARE IOP. Bull. Amer. Meteor. Soc., 80, 2059–2080.CrossRefGoogle Scholar
  17. Curry, J. A. and Coauthors, 2004: SEAFLUX. Bull. Amer. Meteor. Soc., 85(3), 424.CrossRefGoogle Scholar
  18. da Silva, A., C. C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 83pp.Google Scholar
  19. Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306.CrossRefGoogle Scholar
  20. Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665–669.CrossRefGoogle Scholar
  21. Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. J. Geophys. Res., 101(C2), 3747–3764.CrossRefGoogle Scholar
  22. Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of airsea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571–591.CrossRefGoogle Scholar
  23. Jones, C., P. Peterson, and C. Gautier, 1999: A new method for deriving ocean surface specific humidity and air temperature: An artificial neural network approach. J. Appl. Meteor., 38, 1229–1246.CrossRefGoogle Scholar
  24. Josey, S. A., E. C. Kent, and P. K. Taylor, 1999: New insights into the ocean heat budget closure problem from analysis of the SOC air-sea flux climatology. J. Climate, 12, 2856–2880.CrossRefGoogle Scholar
  25. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  26. Kanamitsu, M., W. Ebisuzaki, J Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEPDOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.CrossRefGoogle Scholar
  27. Kubota, M., K. Ichikawa, N. Iwasaka, S. Kizu, M. Konda, and K. Kutsuwada, 2002: Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (JOFURO). J. Oceanogr., 58, 213–215.CrossRefGoogle Scholar
  28. Lin, I-I, W. T. Liu, C.-C. Wu, J. C. H. Chiang, and C.-H. Sui, 2003a: Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett., 30(3), 1131, doi: 10.1029/2002GL015674CrossRefGoogle Scholar
  29. Lin, I-I, and Coauthors, 2003b: New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett., 30(13), 1718, doi: 10.1029/2003GL017141.CrossRefGoogle Scholar
  30. Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 1722–1735.CrossRefGoogle Scholar
  31. Liu, W. T., X. Xie, P. S. Polito, S. P. Xie, and H. Hashizume, 2000: Atmospheric manifestation of tropical instability wave observed by QuikSCAT and Tropical Rainfall Measuring Mission. Geophys. Res. Lett., 27(16), 2545–2548.CrossRefGoogle Scholar
  32. Negri, A. J., T. L. Bell, and L. Xu, 2002: Sampling of diurnal cycle of precipitation using TRMM. J. Atmos. Oceanic Technol., 19, 1333–1344.CrossRefGoogle Scholar
  33. Powell, M. D. P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279–283.CrossRefGoogle Scholar
  34. Renfrew, I. A., G. W. K. Moore, P. S. Guest, and K. Bumke, 2002: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32, 383–400.CrossRefGoogle Scholar
  35. Reynolds, R. W., and T. S. Smith, 1994: Improved global sea surface temperature analyses. J. Climate, 7, 929–948.CrossRefGoogle Scholar
  36. Reynolds, W. R., N. A. Rayner, T. M. Smoth, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625.CrossRefGoogle Scholar
  37. Schulz, J., J. Meywerk, S. Ewald, and P. Schluessel, 1997: Evaluation of satellite-derived latent heat fluxes. J. Climate, 10, 2782–2795.CrossRefGoogle Scholar
  38. Wang, W., and M. J. McPhaden, 2001: What is the mean seasonal cycle of surface heat flux in the equatorial Pacific? J. Geophys. Res., 106, 837–857.CrossRefGoogle Scholar
  39. Wentz, F. J., 1997: A well calibrated ocean algorithm for SSM/I. J. Geophys. Res., 102, 8703–8718.CrossRefGoogle Scholar
  40. Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847–850.CrossRefGoogle Scholar
  41. Woodruff, S. D., S. J. Lubker, K. Wolter, S. J. Worley, and J. D. Elm, 1993: Comprehensive Ocean-Atmosphere Data Set (COADS) release la: 1980–92. Earth System Monitor, 4, 4–8.Google Scholar
  42. Xie, P., J. E. Janowiak, M. Chen, C.-L. Shie, and L. Chiu, 2007: Seasonal and interannual variations of fresh water flux over global oceans in the NCEP CDAS, CDAS2, GDAS, GFS, and CFS. Assessing and Exploiting Re-analysis Data Sets, IUGG 2007, 2–13 July 2007, Perugia, Italy.Google Scholar
  43. Xing, Y. K., 2006: Recent changes in oceanic latent heat flux from remote sensing. Ph. D. dissertation, School of Computational Science, George Mason University, Fairfax VA 22030, 119pp.Google Scholar
  44. Zeng, X., M. Zhao, and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11, 2628–2644.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Chung-Lin Shie
    • 1
    • 2
  • Long S. Chiu
    • 3
    • 4
  • Robert Adler
    • 2
    • 5
  • Eric Nelkin
    • 2
    • 6
  • I. -I. Lin
    • 7
  • Pingping Xie
    • 8
  • Feng-Chin Wang
    • 9
  • R. Chokngamwong
    • 3
  • William Olson
    • 2
    • 10
  • D. Allen Chu
    • 1
    • 11
  1. 1.UMBC/GESTBaltimoreUSA
  2. 2.Code 613.1NASA/GSFCGreenbeltUSA
  3. 3.GMU/CEOSRFairfaxUSA
  4. 4.CUHK/ISEISShatin NT, Hong KongChina
  5. 5.UMCP/ESSICCollege ParkUSA
  6. 6.SSAILanhamUSA
  7. 7.NTUTaipeiTaiwan
  8. 8.NOAA/CPCCamp SpringsUSA
  9. 9.CWBTaipeiTaiwan
  10. 10.UMBC/JCETBaltimoreUSA
  11. 11.Code 613.2NASA/GSFCGreenbeltUSA

Personalised recommendations