Advances in Atmospheric Sciences

, Volume 27, Issue 2, pp 293–302 | Cite as

Application of a recursive filter to a three-dimensional variational ocean data assimilation system

Article

Abstract

In order to improve the efficiency of the Ocean Variational Assimilation System (OVALS), which has been widely used in various applications, an improved OVALS (OVALS2) is developed based on the recursive filter (RF) algorithm. The first advantage of OVALS2 is that memory storage can be substantially reduced in practice because it implicitly computes the background error covariance matrix; the second advantage is that there is no inversion of the background error covariance by preconditioning the control variable. For comparing the effectiveness between OVALS2 and OVALS, a set of experiments was implemented by assimilating expendable bathythermograph (XBT) and ARGO data into the Tropical Pacific circulation model. The results show that the efficiency of OVALS2 is much higher than that of OVALS. The computational time and the computer storage in the assimilation process were reduced by 83% and 77%, respectively. Additionally, the corresponding results produced by the RF are almost as good as those obtained by OVALS. These results prove that OVALS2 is suitable for operational numerical oceanic forecasting.

Key words

recursive filter background error covariance the Ocean Variational Assimilation System (OVALS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and Initial results. Mon. Wea. Rev., 132, 897–913.CrossRefGoogle Scholar
  2. Cooper, M., and K. Haines, 1996: Altimetric assimilation with water property conservation. J. Geophys. Res., 101, 1059–1077.CrossRefGoogle Scholar
  3. Cohn, S. E., A. da Silva, J. Guo, M. Sienkiewicz, and D. Lamich, 1998: Assesing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Wea. Rev., 126, 2913–2926.CrossRefGoogle Scholar
  4. Courtier, P., 1997: Dual formulation of four dimensional variational assimilation. Quart. J. Roy. Meteor. Soc., 123, 2449–2461.CrossRefGoogle Scholar
  5. Courtier, P., J.-N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4DVAR, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–1387.CrossRefGoogle Scholar
  6. Derber, J. D., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19, 1333–1347.CrossRefGoogle Scholar
  7. Derber, J. C., and F. Bouttier, 1999: A reformulation of the background error covariance in the ECMWF global data assimilation system. Tellus, 51A, 195–221.Google Scholar
  8. Dobricic, S., and N., Pinardi, 2008: An oceanographic three-dimensional variational data assimilation scheme. Ocean Modelling, 22, 89–105.CrossRefGoogle Scholar
  9. Fujii, Y., 2005: Preconditioned Optimizing Utility for Large-dimensional analyses (POpULar). Journal of Oceanography, 61, 167–181.CrossRefGoogle Scholar
  10. Fujii, Y., and M. Kamachi, 2003a: A reconstruction of observed profiles in the Sea East of Japan using vertical coupled temperature-salinity EOF modes. Journal of Oceanography, 59, 173–186.CrossRefGoogle Scholar
  11. Fujii, Y., and M. Kamachi, 2003b: A nonlinear preconditioned quasi-Newton method without inversion of a first-guess covariance matrix in variational analysis. Tellus, 55A, 450–454.Google Scholar
  12. Gao, J. D., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic. Technol., 21, 457–469.CrossRefGoogle Scholar
  13. Gao S., F. Wang, M. K. Li, Y. L. Chen, C. X. Yan, and J. Zhu, 2008: Application of altimetry data assimilation on mesoscale eddies simulation. Science in China(D), 51(1), 142–151.CrossRefGoogle Scholar
  14. Golub, G. H., and C. F. van Loan, 1996: Matrix computations. 3rd ed., The Johns Hopkins University Press, Baltimore, U.S.A., 694ppGoogle Scholar
  15. Hayden, C. M., and R. J. Purser, 1995: Recursive filter objective analysis of meteorological fields: Applications to NESDIS operational processing. J. Appl. Meteor., 34, 3–15.CrossRefGoogle Scholar
  16. Han, G., J. Zhu, and G. Zhou, 2004: Salinity estimation using the T-S relation in the context of variational data assimilation. J. Geophys. Res., 109, C03018, doi: 10.1029/2003JC001781.CrossRefGoogle Scholar
  17. Haney, R. L., 1971: Surface thermal boundary conditions for ocean circulation model. J. Phys. Oceanogr., 1, 241–248.CrossRefGoogle Scholar
  18. Heckley, W. A., P. Courtier, J. Pailleux, and E. Anderson, 1992: The ECMWF variational analysis: General formulation and use of background information. Proc. of ECMWF workshop on variational assimilation with special emphasis on three-dimensional aspects, ECMWF, Reading, U.K., 49–94.Google Scholar
  19. Huang, X. Y., 2000: Variational analysis using spatial filters. Mon. Wea. Rev., 128, 2588–2600.CrossRefGoogle Scholar
  20. Kaplan, A., Y. Kushnir, and M. A. Cane, 2000: Reduced space optimal interpolation of historical marine sea level pressure: 1854–1992. J. Climate, 13, 2987–3002.CrossRefGoogle Scholar
  21. Kuragano, T., and M. Kamachi, 2000: Global statistical spacetime scales of oceanic variability estimated from the TOPEX/POSEIDON altimeter data. J. Geo phys. Res., 105, 955–974.CrossRefGoogle Scholar
  22. Levitus, S., 1982: Climatological atlas of the world ocean, NOAA Professional Paper No. 13, U. S. Government Printing Office, Washington, D. C., 173pp.Google Scholar
  23. Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112, 1177–1194.CrossRefGoogle Scholar
  24. Lorenc, A. C., 1988: Optimal nonlinear objective analysis. Quart. J. Roy. Meteor. Soc., 114, 205–240.CrossRefGoogle Scholar
  25. Lorenc, A. C., and Coauthors, 2000: The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 2991–3012.CrossRefGoogle Scholar
  26. Liu, H., and M. Xue, 2006: Retrieval of moisture from slant-path water vapor observations of a hypothetical GPS network using a three-dimensional variational scheme with anisotropic background error. Mon. Wea. Rev., 134, 933–949.CrossRefGoogle Scholar
  27. Liu, H., M. Xue, R. J. Purser, and D. F. Parrish, 2007: Retrieval of moisture from simulated GPS slantpath water vapor observations using 3DVAR with anisotropic recursive filters. Mon. Wea. Rev., 135, 1506–1521.CrossRefGoogle Scholar
  28. Maes, C., 1999: A note on the vertical scales of temperature and salinity and their signature in dynamic height in the western Pacific Ocean: Implications for data assimilation. J. Geophys. Res., 104, 15 575–15 585.Google Scholar
  29. Maes, C., D. Behringer, R. W. Reynolds, and M. Ji, 2000: Retrospective analysis of the salinity variability in the western Tropical Pacific Ocean using an indirect minimization approach. J. Atmos. Oceanic Technol., 17, 512–524.CrossRefGoogle Scholar
  30. Morrow, R., and P. DeMey, 1995: Adjoint assimilation of altimetric, surface drifter, and hydrographic data in a quasi-geostrophic model of Azores current. J. Geophys. Res., 100, 25007–25025.CrossRefGoogle Scholar
  31. Pacanowski, R., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of the tropical ocean. J. Phys. Oceanogr., 11, 1443–1451.CrossRefGoogle Scholar
  32. Purser, R. J., and R. Mcquigg, 1982: A successive correction analysis scheme using numeric filter. Met Office Tech. Note, No. 154, 17pp.Google Scholar
  33. Purser, R. J., W. S. Wu, D. F. Parrish, and N. M. Roberts, 2003a: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 1524–1535.CrossRefGoogle Scholar
  34. Purser, R. J., W. S. Wu, and D. F. Parrish, 2003b: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances. Mon. Wea. Rev., 131, 1536–1548.CrossRefGoogle Scholar
  35. Troccoli, A., and Coauthors, 2002: Salinity adjustments in the presence of temperature data assimilation. Mon. Wea. Rev., 130, 89–102.CrossRefGoogle Scholar
  36. Wu, W. S., R. J. Purser, and D. F. Parrish, 2002: Three dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 2905–2916.CrossRefGoogle Scholar
  37. Xiao, X. J., D. X. Wang, C. X. Yan, and J. Zhu, 2008: Evaluation of a 3dVAR system for the South China Sea. Progress in Nature sciences., 18(5) 547-554.Google Scholar
  38. Yan, C. X., J. Zhu, and G. Q. Zhou, 2004: The roles of vertical correlation of the backgzound covariance and T-S relation in estimation temperature and salinity profiles from surface dynamic height. J. Geophys. Res., 109, C08010, doi: 10.1029/2003JC002224.CrossRefGoogle Scholar
  39. Yan, C. X., J. Zhu, and G. Q. Zhou, 2007: Impacts of XBT, TAO, Altimetry and ARGO Observations on the Tropical Pacific Ocean data assimilation. Adv. Atmos. Sci., 24(3), 383–398, doi: 10.1007/s00376-007-0383-4.CrossRefGoogle Scholar
  40. Zhang, R.-H., and M. Endoh, 1992: A free surface general circulation model for the tropical Pacific Ocean. J. Geophys. Res., 97(C7), 11237–11255.CrossRefGoogle Scholar
  41. Zhou, G. Q., W. W. Fu, and J. Zhu, 2004: The impact of location dependent correlation length scales of background covariance on a ocean data assimilation system. Geophys. Res. Lett., 31, L21306, doi: 10.1029/2004GL020579.CrossRefGoogle Scholar
  42. Zhu, J., and C. Q. Yan, 2006: Nonlinear balance constraint in 3DVAR. Science in China(D), 49, 331–336.CrossRefGoogle Scholar
  43. Zhu, J., H. J. Wang, and G. Q. Zhou, 2002a: SST data assimilation experiments using an adaptive variational method. Chinese Science Bulletin, 47(23), 2010–2013.CrossRefGoogle Scholar
  44. Zhu, J., M. Kamachi, and D. X. Wang, 2002b: Estimation of air-sea heat flux from ocean measurements: An ill-posed problem. J. Geophys. Res., 107, doi: 10.1029/2001JC000995.Google Scholar
  45. Zhu, J., G. Q. Zhou, C. X. Yan, W. W. Fu, and X. B. You, 2006: A three-dimensional variational ocean data assimilation system: Scheme and preliminary results. Science in China(D), 49(11), 1212–1222.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.International Center for Climate and Environment Sciences, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations