Advances in Atmospheric Sciences

, Volume 26, Issue 6, pp 1137–1145 | Cite as

Comparison of COSMIC radio occultation refractivity profiles with radiosonde measurements

  • Xiaohua Xu (徐晓华)
  • Jia Luo (罗 佳)
  • Chuang Shi (施 闯)


In recent years, radio occultation (RO) technology making use of global positioning system (GPS) signals has been exploited to obtain profiles of atmospheric parameters in the neutral atmosphere. In this paper, the RO refractivity profiles obtained from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission are statistically compared with the observations of 38 radiosonde stations provided by the Australian Bureau of Meteorology during the period from 15 July 2006 through 15 July 2007. Different collocation criteria are compared at first, and COSMIC RO soundings that occur within 3 hours and 300 km of radiosonde measurements are used for the final statistical comparison. The overall results show that the agreements between the COSMIC refractivity profiles and the radiosonde soundings from the 38 stations are very good at 0–30 km altitude, with mean absolute relative refractivity deviations of less than 0.5%. Latitudinal comparisons indicate that there are negative refractivity deviations in the lower troposphere over the low latitude and middle latitude regions and large standard deviations exist in the lower troposphere of low latitude regions, which can reach up to ≈6%. The comparisons of COSMIC RO refractivity profiles and radiosonde observations for 3 polar stations in four different seasons indicate that the accuracy of GPS RO profiles is better in the Austral summer and autumn than in the Austral spring and winter during the year from September 2006 to August 2007.

Key words

GPS radio occultation radiosonde soundings refractivity profiles statistical comparison 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 Mission: Early Results. Bull. Amer. Meteor. Soc., 89(3), 313–333.CrossRefGoogle Scholar
  2. Cucurull, L., J. C. Derber, R. Treadon, and R. J. Purser, 2007: Assimilation of global positioning system radio occultation observations into NCEPs global data assimilation system. Mon. Wea. Rev., 35(9), 3174–3193.CrossRefGoogle Scholar
  3. Fjeldbo, G. F., V. R. Eshleman, and A. J. Kliore, 1971: The neutral atmosphere of venus as studied with the mariner V radio occultation experiments. Astronomical Journal, 76(2), 123–140.CrossRefGoogle Scholar
  4. Hajj, G.A., E. R. Kursinski, L. J. Romans, W. I. Bertiger, and S. S. Leroy, 2002: A technical description of atmospheric sounding by GPS occultation. Journal of Atmospheric and Solar-Terrestrial Physics, 64, 451–469.CrossRefGoogle Scholar
  5. Hajj, G. A., and Coauthors, 2004: CHAMP and SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res., 109(D6), doi: 10.1029/2003JD003909.Google Scholar
  6. Healy, S. B., and J. N. Thepaut, 2006: Assimilation experiments with CHAMP GPS radio occultation measurements. Quart. J. Roy. Meteor. Soc., 132(615), 605–623.CrossRefGoogle Scholar
  7. Healy, S. B., A. M. Jupp, and C. Marquardt, 2005: Forecast impact experiment with GPS radio occultation measurements. Geophys. Res. Lett., 32, doi: 10.1029/2004GL020806.Google Scholar
  8. Huang, C.-Y., Y.-H. Kuo, S.-H. Chen, and F. Vandenberghe, 2005: Improvements in Typhoon Forecasts with assimilated GPS occultation refractivity. Wea. Forecasting, 20(6), 931–953.CrossRefGoogle Scholar
  9. Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82(1B), 507–531.CrossRefGoogle Scholar
  10. Kuo, Y.-H., W. S. Schreiner, J. Wang, D. L. Rossiter, and Y. Zhang, 2005: Comparison of GPS radio occultation soundings with radiosondes. Geophys. Res. Lett., 32, doi: 10.1029/2004GL021443.Google Scholar
  11. Nedoluha, G. E., J. Alfred, C. M. Benson, K. W. Hoppel, J. Wickert, and G. Koenig-Langlo, 2007: A comparison of radiosonde and GPS radio occultation measurements with meteorological temperature analyses in the Antarctic vortex, 1998–2004. J. Geophys. Res., 112, D16304, doi: 10.1029/2007JD008928.CrossRefGoogle Scholar
  12. Palmer, P. I., J. J. Barnett, J. R. Eyre, and S. B. Healy, 2000: A non-linear optimal estimation inverse method for radio occultation measurements of temperature, humidity and surface pressure. J. Geophys. Res., 105, 17513–17526.CrossRefGoogle Scholar
  13. Rocken, C., and Coauthors, 1997: Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res., 102(D25), 29849–29866.CrossRefGoogle Scholar
  14. Schmidt, T., S. Heise, J. Wickert, G. Beyerle, and C. Reigber, 2005: GPS radio occultation with CHAMP and SAC-C: Global monitoring of thermal tropopause parameters. Atmospheric Chemistry and Physics, 5, 1473–1488.CrossRefGoogle Scholar
  15. Schreiner, W., C. Rocken, S. Sokolovskiy, S. Syndergaard, and D. Hunt, 2007: Estimates of the precision of GPS occultations from the COSMIC/FORMOSAT-3 mission. Geophys. Res. Lett., 34, L04808, doi: 10.1029/2006GL027557.CrossRefGoogle Scholar
  16. von Engeln, A., G. Nedoluha, G. Kirchengast, and S. Bhler, 2003: One-dimensional variational (1-D Var) retrieval of temperature, water vapor, and a reference pressure from radio occultation measurements: A sensitivity analysis. J. Geophys. Res., 108(D11), 4337, doi: 10.1029/2002JD002908.CrossRefGoogle Scholar
  17. Wang, K., and S. Lin, 2007: First continuous GPS soundings of temperature structure over Antarctic winter from FORMOSAT-3/COSMIC constellation. Geophys. Res. Lett., 34(12), doi: 10.1029/2007GL030159.Google Scholar
  18. Wang, Y., and B. Wang, 2003: The variational experiment of GPS bending angle. Adv. Atmos. Sci., 20(3), 479–486.CrossRefGoogle Scholar
  19. Ware, R., and Coauthors, 1996: GPS Sounding of the atmosphere for low earth orbit: Preliminary results. Bull. Amer. Meteor. Soc., 77, 19–40.CrossRefGoogle Scholar
  20. Wickert, J., 2004: Comparison of vertical refractivity and temperature profiles from CHAMP with radiosonde measurements. Scientific Report 04-09, Danish Meteorological Institute, 35pp.Google Scholar
  21. Wickert, J., T. Schmidt, G. Beyerle, R. Konig, and C. Reigber, 2004: The radio occultation experiment aboard CHAMP operational data analysis and validation of vertical atmospheric profiles. J. Meteor. Soc. Japan, 82(1B), 381–395.CrossRefGoogle Scholar
  22. Yunck, T. P., G. F. Lindal and C. H. Liu, 1988: The Role of GPS in Precise Earth Observation. Proc. IEEE Position Location and Navigation Symposium (PLANS88), Nov. 29–Dec. 2, 1988, Orlando, FL, 251–258.Google Scholar
  23. Zhang, X., Y. Liu, B. Wang, and Z. Ji, 2004: Parallel computing of a variational data assimilation model for GPS/MET observation using the raytracing method. Adv. Atmos. Sci., 21(2), 220–226.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Xiaohua Xu (徐晓华)
    • 1
    • 2
  • Jia Luo (罗 佳)
    • 1
  • Chuang Shi (施 闯)
    • 3
  1. 1.School of Geodesy and GeomaticsWuhan UniversityWuhanChina
  2. 2.School of Mathematical and Geospatial SciencesRMIT UniversityMelbourneAustralia
  3. 3.GNSS Research CenterWuhan UniversityWuhanChina

Personalised recommendations