Advances in Atmospheric Sciences

, Volume 26, Issue 1, pp 57–66 | Cite as

A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia

  • Hua Zhang (张 华)
  • Zhili Wang (王志立)
  • Pinwen Guo (郭品文)
  • Zaizhi Wang (王在志)


The study investigated the effects of global direct radiative forcing due to carbonaceous aerosol on the climate in East Asia, using the CAM3 developed by NCAR. The results showed that carbonaceous aerosols cause negative forcing at the top of the atmosphere (TOA) and surface under clear sky conditions, but positive forcing at the TOA and weak negative forcing at the surface under all sky conditions. Hence, clouds could change the sign of the direct radiative forcing at the TOA, and weaken the forcing at the surface. Carbonaceous aerosols have distinct effects on the summer climate in East Asia. In southern China and India, it caused the surface temperature to increase, but the total cloud cover and precipitation to decrease. However, the opposite effects are caused for most of northern China and Bangladesh. Given the changes in temperature, vertical velocity, and surface streamflow caused by carbonaceous aerosol in this simulation, carbonaceous aerosol could also induce summer precipitation to decrease in southern China but increase in northern China.

Key words

carbonaceous aerosol radiative forcing CAM3 climate effect in East Asia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J. H. Woo, and Z. Klimont, 2004: A technology-based emissions global inventory of black and organic carbon from combustion. J. Geophys. Res., 109(D14203), doi: 10.1029/2003JD003697.Google Scholar
  2. Briegleb, B. P., 1992: Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model. J. Geophys. Res., 97, 7603–7612.Google Scholar
  3. Charlson, R. J., and J. Heintzenberg, Eds., 1995: Aerosol Forcing of Climate. Report of the Dehlem Workshop on Aerosol Forcing, John Wiley & Sons, New York, 416pp.Google Scholar
  4. Chung, S. H., 2004: Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res., 110(D11102), doi: 10.1029/2004JD005441.Google Scholar
  5. Chung, S. H., and J. H. Seinfeld, 2005: Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res., 110(D11102), doi: 10.1029/2004JD005441.Google Scholar
  6. Collins, W. D., and Coauthors, 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res., 106, 7313–7336.CrossRefGoogle Scholar
  7. Collins, W. D., P. J. Rasch, B. E. Eaton, B. V. Khattatov, J. F. Lamarque, and C. S. Zender, 2002: Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts. J. Geophys. Res., 107, doi: 10.1029/2001JD001365.Google Scholar
  8. Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, and B. P. Briegleb, 2005: The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19, 2144–2161.CrossRefGoogle Scholar
  9. Fuller, K. A., W. C. Malm, and S. M. Kreidenweis, 1999: Effects of mixing on extinction by carbonaceous particles. J. Geophys. Res., 104(15), 941–954.Google Scholar
  10. Gu, Y., K. N. Liou, Y. Xue, C. R. Mechoso, W. Li, and Y. Luo, 2006: Climatic effects of different aerosol types in China simulated by the UCLA general circulation model. J. Geophys. Res., 111(D15201), doi: 10.1029/2005JD006312.Google Scholar
  11. Hamilton, J., P. Webb, A. Lewis, J. Hopkins, S. Smith, and P. Davy, 2004: Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS. Atmospheric Chemistry and Physics, 4, 1279–1290.CrossRefGoogle Scholar
  12. Haywood, J. M., and V. Ramaswamy, 1998: Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. J. Geophys. Res., 103, 6043–6058.CrossRefGoogle Scholar
  13. Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79(5), 831–844.CrossRefGoogle Scholar
  14. Hitzenberger, R., and H. Puxbaum, 1993: Comparisons of the measured and calculated specific absorption coefficient for Vienna urban aerosol samples. Aerosol Science and Technology, 18, 323–245.CrossRefGoogle Scholar
  15. Huang, Y., W. L. Chameides, and R. E. Dickinson, 2007: Direct and indirect effects of anthropogenic aerosols on regional precipition over East Asia. J. Geophys. Res., 112(D03212), doi: 10.1029/2006JD007114.Google Scholar
  16. IPCC(AR4), 2007: The Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Chapter 2, 153–171.Google Scholar
  17. Jacobson, M. Z., 2001: Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res., 106(D2), 1551–1568.CrossRefGoogle Scholar
  18. Jacobson, M. Z., 2002: Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J. Geophys. Res., 107(D19), 4410, doi: 10.1029/2001JD001376.CrossRefGoogle Scholar
  19. Ma, J.-H., H. Zhang, and Y.-F. Zheng, 2007a: The analysis of global distribution of optical depth due to dust aerosol. Climatic and Environmental Research, 12(2), 156–164. (in Chinese)Google Scholar
  20. Ma, J.-H., Y.-F. Zheng, and H. Zhang, 2007b: The analysis of global distribution of optical depth due to black carbon aerosol. Scientia Meteorologica Sinica, 27(5), 549–556. (in Chinese)Google Scholar
  21. Menon, S., J. Hansen, L. Nazarenko, and Y. F. Luo, 2002: Climate effects of Black Carbon Aerosols in China and India. Science, 297, 2250–2253.CrossRefGoogle Scholar
  22. Murphy, D. M., 2005: Something in the air. Science, 307, 1888–1890.CrossRefGoogle Scholar
  23. Nakajima, T., and Coauthors, 2000: Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39, 4869–4878.CrossRefGoogle Scholar
  24. Novakov, T., D. A. Hegg, and P. V. Hobbs, 1997: Airborne measurements of carbonaceous aerosols on the East coast of the United States. J. Geophys. Res., 102(D25), 30023–30030.CrossRefGoogle Scholar
  25. Raes, F., T. Bates, F. McGovern, and M. Liedekerke, 2000: The second Aerosol Characterization Experiment (ACE-2): General overview and main results. Tellus(B), 52, 111–125.Google Scholar
  26. Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001a: Aerosols, climate, and the hydrological cycle. Science, 294, 2119–2124.CrossRefGoogle Scholar
  27. Ramanathan, V., and Coauthors, 2001b: An integrated assessment of the climate forcing and effects of great Indo-Asian haze. J. Geophys. Res., 106(D22), 28, 371–399.CrossRefGoogle Scholar
  28. Rasch, P. J., N. W. Mahowald, and B. E. Eaton, 1997: Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of short lived and soluble species. J. Geophys. Res., 102, 28127–28138.CrossRefGoogle Scholar
  29. Reid, J. S., P. V. Hobbs, C. Liousse, J. V. Martins, R. E. Weiss, and T. F. Eck, 1998: Comparisons of techniques for measuring shortwave absorption and black carbon content of aerosols from biomass burning in Brazil. J. Geophys. Res., 103(D24), 32031–32040.CrossRefGoogle Scholar
  30. Roberts, D. L., and A. Jones, 2004: Climate sensitivity to black carbon aerosol from fossil fuel combustion. J. Geophys. Res., 109(D16202), doi: 10.1029/2004JD004676.Google Scholar
  31. Russell, P. B., and Coauthors, 1999: Aerosol-induced radiative flux changes off the United States mid-Atlantic coast: Comparison of values calculated from sunphotometer and in situ data with those measured by airborne pyranometer. J. Geophys. Res., 104, 2289–2307.CrossRefGoogle Scholar
  32. Schnaiter, M., H. Horvath, O. Mohler, K. H. Nauman, H. Saathoff, and O. W. Schock, 2003: UVVIS-NIR spectral optical properties of soot and soot-containing aerosols. Journal of Aerosol Science, 34(10), 1421–1444.CrossRefGoogle Scholar
  33. Schult, I., J. Feichter, and W. F. Cooke, 1997: Effect of black carbon and sulfate aerosols on the Global Radiation Budget. J. Geophys. Res., 102(D25), 30107–30117.CrossRefGoogle Scholar
  34. Schumacher, C., and R. A. Houze, 2006: Stratiform precipitation production over sub-Saharan Africa and the tropical East Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc., 132, 2235–2255.CrossRefGoogle Scholar
  35. Slingo, A., 1989: A GCM parameterization for the shortwave radiative properties of clouds. J. Atmos. Sci., 46, 1419–1427.CrossRefGoogle Scholar
  36. Takemura, T., and T. Nakajima, 2002: Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Climate, 15(4), 333–352.CrossRefGoogle Scholar
  37. Wang, C., 2004: A modeling study on the climate impact of black carbon aerosols. J. Geophys. Res., 109(D03106), doi: 10.1029/2003JD004084.Google Scholar
  38. Wu, J., and C. B. Fu, 2005: Simulation study of distribution transportation and radiative effects of black carbon aerosol in recent five springs. Chinese J. Atmos. Sci., 29(1), 111–119. (in Chinese)Google Scholar
  39. Zhang, H., J. H. Ma, and Y. F. Zheng, 2008: The study of global radiative forcing due to black carbon aerosol. Chinese J. Atmos. Sci., 32(5), 1147–1158. (in Chinese)Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Hua Zhang (张 华)
    • 1
  • Zhili Wang (王志立)
    • 1
    • 2
  • Pinwen Guo (郭品文)
    • 3
  • Zaizhi Wang (王在志)
    • 1
  1. 1.Laboratory for Climate Studies, National Climate CenterChina Meteorological AdministrationBeijingChina
  2. 2.Chinese Academy of Meteorological SciencesBeijingChina
  3. 3.The College of Atmospheric ScienceNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations