Advances in Atmospheric Sciences

, Volume 25, Issue 6, pp 946–959 | Cite as

Characteristics of anthropogenic sulfate and carbonaceous aerosols over East Asia: Regional modeling and observation

  • Yan Huang
  • William L. Chameides
  • Qian Tan
  • Robert E. Dickinson
Article

Abstract

The authors present spatial and temporal characteristics of anthropogenic sulfate and carbonaceous aerosols over East Asia using a 3-D coupled regional climate-chemistry-aerosol model, and compare the simulation with the limited aerosol observations over the region. The aerosol module consists of SO2, SO 4 2− , hydrophobic and hydrophilic black carbon (BC) and organic carbon compounds (OC), including emission, advections, dry and wet deposition, and chemical production and conversion. The simulated patterns of SO2 are closely tied to its emission rate, with sharp gradients between the highly polluted regions and more rural areas. Chemical conversion (especially in the aqueous phase) and dry deposition remove 60% and 30% of the total SO2 emission, respectively. The SO 4 2− shows less horizontal gradient and seasonality than SO2, with wet deposition (60%) and export (27%) being two major sinks. Carbonaceous aerosols are spatially smoother than sulfur species. The aging process transforms more than 80% of hydrophobic BC and OC to hydrophilic components, which are removed by wet deposition (60%) and export (30%). The simulated spatial and seasonal SO 4 2− , BC and OC aerosol concentrations and total aerosol optical depth are generally consistent with the observations in rural areas over East Asia, with lower bias in simulated OC aerosols, likely due to the underestimation of anthropogenic OC emissions and missing treatment of secondary organic carbon. The results suggest that our model is a useful tool for characterizing the anthropogenic aerosol cycle and for assessing its potential climatic and environmental effects in future studies.

Key words

regional climate modeling anthropogenic emission sulfate aerosol black carbon and organic carbon East Asia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrie, L. A., and Coauthors, 2001: A comparison of large-scale atmospheric sulfate aerosol models (COSAM): Overview and highlights. Tellus, 53B, 615–645.Google Scholar
  2. Bergin, M. H., W. Greenwald, J. Xu, Y. Berta, and W. L. Chameides, 2001a: Influence of aerosol dry deposition on photosynthetically active radiation available to plants: A case study in the Yangtze delta region of China. Geophys. Res. Lett., 28, 3605–3608.CrossRefGoogle Scholar
  3. Bergin, M. H., and Coauthors, 2001b: Aerosol radiative, physical, and chemical properties in Beijing during June 1999. J. Geophys. Res., 106, 17969–17980.CrossRefGoogle Scholar
  4. Chameides, W. L., 1995: The Yangtze Delta of China as an evolving Metro-Agro-Plex (China-MAP), a proposal to the National Aeronautics and Space Administration, Georgia Institute of Technology, Atlanta, GA, 55pp.Google Scholar
  5. Chameides, W. L., and Coauthors, 1999a: Case study of the effects of atmospheric aerosols and regional haze on agriculture: An opportunity to enhance crop yields in China through emission controls? Proceedings of the National Academy of Sciences, U. S. A., 96, 13626–13633.CrossRefGoogle Scholar
  6. Chameides, W. L., and Coauthors, 1999b: Is ozone pollution affecting crop yields in China? Geophys. Res. Lett., 26, 867–870.CrossRefGoogle Scholar
  7. Chameides, W. L., C. Luo, R. Saylor, D. Streets, Y. Huang, M. H. Bergin, and F. Giorgi, 2002: Correlation between model-calculated anthropogenic aerosols and satellite-derived cloud optical depths: Indication of indirect effect? J. Geophys. Res., 107(D10), doi: 10.1029/2000JD000208.Google Scholar
  8. Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423–430.CrossRefGoogle Scholar
  9. Chin, M., D. J. Jacob, G. M. Gardner, M. S. Foreman-Fowler, P. A. Spiro, and D. L. Savoie, 1996: A global three-dimensional model of tropospheric sulfate. J. Geophys. Res., 101(D13), 18667–18690.CrossRefGoogle Scholar
  10. Chin, M., and Coauthors, 2000a: Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets. J. Geophys. Res., 105(D20), 24689–24712.CrossRefGoogle Scholar
  11. Chin, M., R. B. Rood, S.-J. Lin, J.-F. Müller, and A. M. Thompson, 2000b: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res., 105(D20), 24671–24688.CrossRefGoogle Scholar
  12. Chuang, C. C., J. E. Penner, K. E. Taylor, A. S. Grossman, and J. J. Walton, 1997: An assessment of the radiative effects of anthropogenic sulfate. J. Geophys. Res., 102, 3761–3778.CrossRefGoogle Scholar
  13. Coakley, J. A. Jr., R. D. Cess, and F. B. Yurevich, 1983: The effect of tropospheric aerosols on the Earth’s radiation budget: A parameterization for climate models. J. Atmos. Sci., 40, 116–138.CrossRefGoogle Scholar
  14. Cooke, W. F., and J. J. N. Wilson, 1996: A global black carbon aerosol model. J. Geophys. Res., 101, 19395–19409.CrossRefGoogle Scholar
  15. Fu, C., F.W. T. Penning de Vries, Ailikun, C. T. A. Chen, L. Lebel, M. Manton, A. Snidvongs, and H. Virji, Eds., 2006: The initial science plan of the Monsoon Asia Integrated Regional Study. MAIRS-IPO, IAPCAS, Beijing, China, 80pp.Google Scholar
  16. Ganzeveld, L., J. Lelieveld, and G. J. Roelofs, 1998: A dry deposition parameterization for sulfur oxides in a chemistry and general circulation model. J. Geophys. Res., 103, 5679–5694.CrossRefGoogle Scholar
  17. Giorgi, F., and W. L. Chameides, 1986: Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model. J. Geophys. Res., 91, 14367–14376.CrossRefGoogle Scholar
  18. Giorgi, F., M. R. Marinucci, and G.T. Bates, 1993a: Development of a second-generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121, 2794–2813.CrossRefGoogle Scholar
  19. Giorgi, F., M. R. Marinucci, G. T. Bates, and G. De Canio, 1993b: Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 2814–2832.CrossRefGoogle Scholar
  20. Giorgi, F., Y. Huang, K. Nishizawa, and C. Fu, 1999: A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes. J. Geophys. Res., 104, 6403–6423.CrossRefGoogle Scholar
  21. Hagler, G. S. W., and Coauthors, 2006: Source areas and chemical composition of fine particulate matter in the Pearl River Delta Region of China. Atmos. Environ., 40, 3802–3815.CrossRefGoogle Scholar
  22. Haywood, J. M., and K. P. Shine, 1995: The effect of anthropogenic sulfate and soot on the clear sky planetary radiation budget. Geophys. Res. Lett., 22, 603–606.CrossRefGoogle Scholar
  23. Heald, C. L., D. J. Jacob, R. J. Park, L. M. Russell, B. J. Huebert, J. H. Seinfeld, H. Liao, and R. J. Weber, 2005: A large organic aerosol source in the free troposphere missing from current models. Geophys. Res. Lett., 32, L18809, doi: 10.1029/2005GL023831.CrossRefGoogle Scholar
  24. Hegg, D. A., J. Livingston, P. V. Hobbs, T. Novakov, and P. B. Russell, 1997: Chemical apportionment and aerosol column optical depths off the mid-Atlantic coast of the United States. J. Geophys. Res., 102, 25293–25303.CrossRefGoogle Scholar
  25. Henze, D. K., J. H. Seinfeld, N. L. Ng, J. H. Kroll, T.-M. Fu, D. J. Jacob, and C. L. Heald, 2007: Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high-vs low-yield pathways. Atmospheric Chemistry and Physics Discussions, 7, 14569–14601.CrossRefGoogle Scholar
  26. Huang, Y., 2005: Assessments of the direct and indirect effects of anthropogenic aerosols on regional precipitation over East Asia using a coupled regional climate-chemistry-aerosol module. Ph. D. dissertation, Georgia Institute of Technology, Atlanta, Georgia. 143pp.Google Scholar
  27. Huang, Y., R. E. Dickinson, and W. L. Chameides, 2006: Impact of aerosol indirect effect on surface temperature over East Asia. Proceedings of the National Academy of Sciences U. S. A., 103, 4371–4376, doi: 10.1073/pnas.0504428103.CrossRefGoogle Scholar
  28. Huang, Y., W. L. Chameides, and R. E. Dickinson, 2007: The assessment of direct and indirect effect of anthropogenic aerosols on regional precipitation over East Asia. J. Geophys. Res., 112, D03212, doi: 10.1029/2006JD007114.CrossRefGoogle Scholar
  29. Huebert, B. J., T. Bates, P. B. Russell, G. Shi, Y. J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima, 2003: An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J. Geophys. Res., 108(D23), 8633, doi: 10.1029/2003JD003550.CrossRefGoogle Scholar
  30. IPCC, 1995: Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios. Houghton et al., Eds., Cambridge University Press, New York, 339pp.Google Scholar
  31. Kasibhatla, P., W. L. Chameides, and J. St. John, 1997: A three dimensional global model investigation of seasonal variation in the atmospheric burden of anthropogenic sulfate aerosols. J. Geophys. Res., 102, 3737–3759.CrossRefGoogle Scholar
  32. Koch, D., 2001: Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. J. Geophys. Res., 106, 20311–20332.CrossRefGoogle Scholar
  33. Langner, J., and H. Rodhe, 1991: A global three-dimensional model of the tropospheric sulphur cycle. J. Atmos. Chem., 13, 225–263.CrossRefGoogle Scholar
  34. Levine, S. Z., and S. E. Schwartz, 1982: In-cloud and below-cloud scavenging of nitric acid vapor. Atmos. Environ., 16, 1725–1734.CrossRefGoogle Scholar
  35. Liao, H., D. K. Henze, J. H. Seinfeld, S. Wu, and L. J. Mickley, 2007: Biogenic secondary organic aerosol over the United States: Comparison of climatological simulations with observations. J. Geophys. Res., 112(D6), D06201, doi: 10.1029/2006JD007813.CrossRefGoogle Scholar
  36. Lippmann, M., and Coauthors, 2003: The U.S. Environmental Protection Agency Particulate Matter Health Effects Research Centers Program: A midcourse report of status, progress, and plans. Environmental Health Perspectives, 111(8), 1074–1092.Google Scholar
  37. Luo, C., J. St. John, X. Zhou, K. S. Lam, T. Wang, and W. L. Chameides, 2000: A nonurban ozone air pollution episode over eastern China: Observations and model simulations. J. Geophys. Res., 105, 1889–1908.CrossRefGoogle Scholar
  38. Malm, W. C., J. F. Sisler, D. Huffman, R. A. Eldred, and T. A. Cahill, 1994: Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res., 99(D1), 1347–1370.CrossRefGoogle Scholar
  39. Novakov, T., D. A. Hegg, and P. V. Hobbs, 1997: Airborne measurements of carbonaceous aerosols on the East Coast of the United States. J. Geophys. Res., 102, 30023–30030.CrossRefGoogle Scholar
  40. Penner, J. E., C. S. Atherton, and T. A. Graedel, 1994: Global emissions and models of photochemically active compounds. Global Atmospheric-Biospheric Chemistry, R. G. Prinn, Ed., Plenum, New York, 223–247.Google Scholar
  41. Pham, M., J.-F. Muller, G. Brasseur, C. Granier, and G. Mégie, 1995: A three-dimensional study of the tropospheric sulfur cycle. J. Geophys. Res., 100, 26061–26092.CrossRefGoogle Scholar
  42. Qian, Y., F. Giorgi, Y. Huang, W. L. Chameides, and C. Luo, 2001: Regional simulation of anthropogenic sulfur over east Asia and its sensitivity to model parameters. Tellus, 53B, 171–191.Google Scholar
  43. Ramanathan, V., P. J. Crutzen, J. Kiehl, and D. Rosenfeld, 2001: Aerosol, climate and the hydrological cycle. Science, 292, 2119–2124.CrossRefGoogle Scholar
  44. Ramanathan, V., C. Chung, D. Kim, T. Bettge, L. Buja, J. T. Kiehl, W. M. Washington, and Q. Fu, et al. 2005: Atmospheric Brown Clouds: Impacts on South Asian Climate and Hydrological Cycle. Proceedings of the National Academy of Sciences U. S. A., 102(15), 5326–5333, doi: 10.1073/pnas.0500656102.CrossRefGoogle Scholar
  45. Roelofs, G. J., P. Kasibhatla, L. A. Barrie, D. Bergman, C. Bridgeman, M. Chin, J. Christensen, and R. Easter, 2001: Analysis of regional budgets of sulfur species modeled for the COSAM exercise. Tellus, 53B, 673–694.Google Scholar
  46. Schimel, D., and Coauthors, 1996: Radiative forcing of climate change. Climate Change 1995: The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel for Climate Change (IPCC), Houghton et al., Eds., Cambridge University Press, New York, 65–130.Google Scholar
  47. Schwartz, S. E., 1996: The whitehouse effect-shortwave radiative forcing of climate by anthropogenic aerosols: An overview. Journal of Aerosol Science, 27, 359–382.CrossRefGoogle Scholar
  48. Streets, D. G., and S. T. Waldhoff, 2000: Present and future emissions of air pollutants in China: SO2, NOx, and CO. Atmos. Environ., 34, 363–374.CrossRefGoogle Scholar
  49. Streets, D. G., S. Gupta, S. T. Waldhoff, M. Q. Wang, T. C. Bond, and Y. Bo, 2001: Black carbon emissions in China. Atmos. Environ., 35, 4281–4296.CrossRefGoogle Scholar
  50. Streets, D. G., and Coauthous, 2003: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res., 108, doi: 10.1029/2002JD003093.Google Scholar
  51. Tan, Q., Y. Huang, and W. L. Chameides, 2002: Budget and export of anthropogenic SOx from East Asia during continental outflow conditions. J. Geophys. Res., 107, doi: 10.1029/2001JD000769.Google Scholar
  52. Tan, Q., W. L. Chameides, D. Streets, T. Wang, J. Xu, M. Bergin, and J. Woo, 2004: An evaluation of TRACEP emission inventories from China using a regional model and chemical measurements. J. Geophys. Res., 109, doi: 10.1029/2004JD005071.Google Scholar
  53. United Nations, 1996: United Nations Statistical Yearbook. 41th Issue, United Nations Publication, New York, NY, 886pp.Google Scholar
  54. Wang, T., T. F. Cheung, Y. S. Li, X. M. Yu, and D. R. Blake, 2002: Emission characteristics of CO, NOx and SO2 and indications of biomass burning observed at a rural site in eastern China. J. Geophys. Res., 107(D12), 4157, doi: 10.1029/2001JD000724.CrossRefGoogle Scholar
  55. Xu, J., M. H. Bergin, X. Yu, G. Liu, J. Zhao, C. M. Carrico, and K. Baumann 2002: Measurement of aerosol chemical, physical and radiative properties in the Yangtze Delta region of China. Atmos. Environ., 36, 161–173.CrossRefGoogle Scholar
  56. Yan, P., and Coauthors, 1997, Observational analysis of surface O3, NOx and SO2 in China, Quarterly Journal of Applied Meteorology. Quarterly Journal of Applied Meteorology, 1, 54–62. (in Chinese)Google Scholar
  57. Zhou, X. J., W. L. Li, and Y. F. Luo, 1998: Numerical simulation of the aerosol radiative forcing and regional climate effect over China. Scientia Atmospherica Sinica, 22, 418–427.Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Yan Huang
    • 1
  • William L. Chameides
    • 2
  • Qian Tan
    • 3
  • Robert E. Dickinson
    • 1
  1. 1.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Nicholas School of the Environment and Earth SciencesDuke UniversityDurhamUSA
  3. 3.Goddard Earth Sciences and Technology CenterUniversity of MarylandBaltimoreUSA

Personalised recommendations