Advertisement

Advances in Atmospheric Sciences

, Volume 25, Issue 5, pp 709–722 | Cite as

Sensitivity of East Asian climate to the progressive uplift and expansion of the Tibetan Plateau under the mid-Pliocene boundary conditions

  • Dabang Jiang (姜大膀)Email author
  • Zhongli Ding (丁仲礼)
  • Helge Drange
  • Yongqi Gao (郜永祺)
Open Access
Article

Abstract

A global atmospheric general circulation model has been used to perform eleven idealized numerical experiments, i.e., TP00, TP10, ..., TP100, corresponding to different percentages of the Tibetan Plateau altitude. The aim is to explore the sensitivity of East Asian climate to the uplift and expansion of the Tibetan Plateau under the reconstructed boundary conditions for the mid-Pliocene about 3 Ma ago. When the plateau is progressively uplifted, global annual surface temperature is gradually declined and statistically significant cooling signals emerge only in the Northern Hemisphere, especially over and around the Tibetan Plateau, with larger magnitudes over land than over the oceans. On the contrary, annual surface temperature rises notably over Central Asia and most parts of Africa, as well as over northeasternmost Eurasia in the experiments TP60 to TP100. Meanwhile, the plateau uplift also leads to annual precipitation augmentation over the Tibetan Plateau but a reduction in northern Asia, the Indian Peninsula, much of Central Asia, parts of western Asia and the southern portions of northeastern Europe. Additionally, it is found that an East Asian summer monsoon system similar to that of the present initially exists in the TP60 and is gradually intensified with the continued plateau uplift. At 850 hPa the plateau uplift induces an anomalous cyclonic circulation around the Tibetan Plateau in summertime and two anomalous westerly currents respectively located to the south and north of the Tibetan Plateau in wintertime. In the mid-troposphere, similar-to-modern spatial pattern of summertime western North Pacific subtropical high is only exhibited in the experiments TP60 to TP100, and the East Asian trough is steadily deepened in response to the progressive uplift and expansion of the Tibetan Plateau.

Key words

Tibetan Plateau uplift East Asian climate mid-Pliocene model 

References

  1. Abe, M., A. Kitoh, and T. Yasunari, 2003: An evolution of the Asian summer monsoon associated with mountain uplift—simulation with the MRI atmosphere-ocean coupled GCM. J. Meteor. Soc. Japan, 81, 909–933.CrossRefGoogle Scholar
  2. Abe, M., T. Yasunari, and A. Kitoh, 2004: Effects of large-scale orography on the coupled atmosphere-ocean system in the tropical Indian and Pacific oceans in boreal summer. J. Meteor. Soc. Japan, 82, 745–759.CrossRefGoogle Scholar
  3. Abe, M., T. Yasunari, and A. Kitoh, 2005: Sensitivity of the central Asian climate to uplift of the Tibetan Plateau in the coupled climate model (MRICGCM1). The Island Arc, 14, 378–388.CrossRefGoogle Scholar
  4. An, Z., 2000: The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews, 19, 171–187.CrossRefGoogle Scholar
  5. An, Z., J. E. Kutzbach, W. L. Prell, and S. C. Porter, 2001: Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since late Miocene time. Nature, 411, 62–66.CrossRefGoogle Scholar
  6. Berggren, W. A., D. V. Kent, C. C. Swisher, and M. P. Aubry, 1995: A revised Cenozoic geochronology and chronostratigraphy. Geochronology, Time Scales and Global Stratigraphic Correlation, W. A. Berggren et al., Eds., Spec. Publ. SEPM Soc. Sediment. Geol., 54, 129–212.Google Scholar
  7. Bi, X., 1993: IAP 9-level atmospheric general circulation model and climate simulation. Ph. D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 210pp. (in Chinese)Google Scholar
  8. Broccoli, A. J., and S. Manabe, 1992: The effects of orography on midlatitude Northern Hemisphere dry climates. J. Climate, 5, 1181–1201.CrossRefGoogle Scholar
  9. Dettman, D. L., X. Fang, C. N. Garzione, and J. Li, 2003: Uplift-driven climate change at 12 Ma: A long δ 18O record from the NE margin of the Tibetan plateau. Earth and Planetary Science Letters, 214, 267–277.CrossRefGoogle Scholar
  10. Dowsett, H., J. Barron, R. Poore, R. Thompson, T. Cronin, S. Ishman, and D. Willard, 1999: Middle Pliocene paleoenvironmental reconstruction: PRISM2. U. S. Geological Survey Open File Report, 99-535. [Available at http://pubs.usgs.gov/of/1999/of99-535]
  11. Fluteau, F., G. Ramstein, and J. Besse, 1999: Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. J. Geophys. Res., 104(D10), 11995–12018.CrossRefGoogle Scholar
  12. Fort, M., 1996: Late Cenozoic environmental changes and uplift on the northern side of the central Himalaya: a reappraisal from field data. Palaeogeography, Palaeoclimatology, Palaeoecology, 120, 123–145.CrossRefGoogle Scholar
  13. Garzione, C. N., J. Quade, P. G. DeCelles, and N. B. English, 2000: Predicting paleoelevation of Tibet and the Himalaya from δ 18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth and Planetary Science Letters, 183, 215–229.CrossRefGoogle Scholar
  14. Guo, Z., and Coauthors, 2002: Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159–163.CrossRefGoogle Scholar
  15. Guo, Z., S. Peng, Q. Hao, P. E. Biscaye, Z. An, and T. Liu, 2004: Late Miocene-Pliocene development of Asian aridification as recorded in the red-earth formation in northern China. Global and Planetary Change, 41, 135–145.CrossRefGoogle Scholar
  16. Hahn, D. G., and S. Manabe, 1975: The role of mountains in the South Asian monsoon circulation. J. Atmos. Sci., 32, 1515–1541.CrossRefGoogle Scholar
  17. Harrison, T. M., P. Copeland, W. S. F. Kidd, and A. Yin, 1992: Raising Tibet. Science, 255, 1663–1670.CrossRefGoogle Scholar
  18. Jiang, D., and Z. Zhang, 2006: Paleoclimate modelling at the Institute of Atmospheric Physics, Chinese Academy of Sciences. Adv. Atmos. Sci., 23(6), 1040–1049.CrossRefGoogle Scholar
  19. Jiang, D., and X. Liang, 2008: Attribution of East Asian climate at the last glacial maximum. Quaternary Sciences, 28(3), 491–501. (in Chinese with English abstract)Google Scholar
  20. Jiang, D., H. J. Wang, H. Drange, and X. Lang, 2003: Last Glacial Maximum over China: Sensitivities of climate to paleovegetation and Tibetan ice sheet. J. Geophys. Res., 108(D3), 4102, doi: 10.1029/2002JD002167.CrossRefGoogle Scholar
  21. Jiang, D., H. J. Wang, Z. Ding, X. Lang, and H. Drange, 2005: Modeling the middle Pliocene climate with a global atmospheric general circulation model. J. Geophys. Res., 110, D14107, doi: 10.1029/2004JD005639.CrossRefGoogle Scholar
  22. Jin, L., H. J. Wang, F. Chen, and D. Jiang, 2006: A possible impact of cooling over the Tibetan Plateau on the mid-Holocene East Asian monsoon climate. Adv. Atmos. Sci., 23(4), 543–550, doi: 10.1007/s00376-006-0543-y.CrossRefGoogle Scholar
  23. Ju, L., H. J. Wang, and D. Jiang, 2007: Simulation of the Last Glacial Maximum climate over East Asia with a regional climate model nested in a general circulation model. Palaeogeography, Palaeoclimatology, Palaeoecology, 248, 376–390.CrossRefGoogle Scholar
  24. Joussaume, S., and K. E. Taylor, 1995: Status of the Paleoclimate Modeling Intercomparison Project (PMIP). Proc. First International AMIP Scientific Conference, Tech. Doc. WMO/TD-732, W. L. Gates, Ed., World Meteorol. Organ., Geneva, Switzerland, 425–430.Google Scholar
  25. Kitoh, A., 1997: Mountain uplift and surface temperature changes. Geophys. Res. Lett., 24, 185–188.CrossRefGoogle Scholar
  26. Kitoh, A., 2002: Effects of large-scale mountains on surface climate—A coupled ocean-atmosphere general circulation model study. J. Meteor. Soc. Japan, 80, 1165–1181.CrossRefGoogle Scholar
  27. Kitoh, A., 2004: Effects of mountain uplift on East Asian summer climate investigated by a coupled atmosphere-ocean GCM. J. Climate, 17, 783–802.CrossRefGoogle Scholar
  28. Kitoh, A., 2007: ENSO modulation by mountain uplift. Climate Dyn., 28, 781–796.CrossRefGoogle Scholar
  29. Kutzbach, J. E., P. J. Guetter, W. F. Ruddiman, and W. L. Prell, 1989: Sensitivity of climate to Late Cenozoic uplift in southern Asia and the American West: numerical experiments. J. Geophys. Res., 94(D15), 18393–18407.CrossRefGoogle Scholar
  30. Li, J., and Coauthors, 1997: Late Cenozoic magnetostratigraphy (11-0 Ma) of the Dongshanding and Wangjiashan sections in the Longzhong Basin, western China. Geologie en Mijnbouw, 76, 121–134.Google Scholar
  31. Liang, X., 1996: Description of a nine-level grid point atmospheric general circulation model. Adv. Atmos. Sci., 13, 269–298.CrossRefGoogle Scholar
  32. Liu, X., J. E. Kutzbach, Z. Liu, Z. An, and L. Li, 2003: The Tibetan Plateau as amplifier of orbital-scale variability of the East Asian monsoon. Geophys. Res. Lett., 30(16), 1839, doi:10.1029/2003GL017510.Google Scholar
  33. Liu, X., and Z. Yin, 2002: Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 183, 223–245.CrossRefGoogle Scholar
  34. Manabe, S., and T. B. Terpstra, 1974: The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci., 31, 3–42.CrossRefGoogle Scholar
  35. Molnar, P., 2005: Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate. Palaeontologia Electronica, 8, 1–23.Google Scholar
  36. Molnar, P., P. England, and J. Martinod, 1993: Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon development. Rev. Geophys., 31, 357–396.CrossRefGoogle Scholar
  37. Prell, W. L., and J. E. Kutzbach, 1992: Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 360, 647–652.CrossRefGoogle Scholar
  38. Qiang, X. K., Z. X. Li, C. M. Powell, and H. B. Zheng, 2001: Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet. Earth and Planetary Science Letters, 187, 83–93.CrossRefGoogle Scholar
  39. Ramstein, G., F. Fluteau, J. Besse, and S. Joussaume, 1997: Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 386, 788–795.CrossRefGoogle Scholar
  40. Rea, D. K., H. Snoeckx, and L. H. Joseph, 1998: Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography, 13, 215–224.CrossRefGoogle Scholar
  41. Rind, D., and M. A. Chandler, 1991: Increased ocean heat transports and warmer climate. J. Geophys. Res., 96, 7437–7461.CrossRefGoogle Scholar
  42. Rowley, D. B., R. T. Pierrehumbert, and B. S. Currie, 2001: A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth and Planetary Science Letters, 188, 253–268.CrossRefGoogle Scholar
  43. Ruddiman, W. F., and J. E. Kutzbach, 1989: Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. J. Geophys. Res., 94(D15), 18409–18427.CrossRefGoogle Scholar
  44. Ruddiman, W. F., W. L. Prell, and M. E. Raymo, 1989: Late Cenozoic uplift in southern Asia and the American West: Rationale for general circulation modeling experiments. J. Geophys. Res., 94, 18379–18391.CrossRefGoogle Scholar
  45. Spicer, R. A., N. B. W. Harris, M. Widdowson, A. B. Herman, S. Guo, P. J. Valdes, J. A. Wolfe, and S. P. Kelley, 2003: Constant elevation of southern Tibet over the past 15 million years. Nature, 421, 622–624.CrossRefGoogle Scholar
  46. Sun, J., R. Zhu, and Z. An, 2005: Tectonic uplift in the northern Tibetan Plateau since 13.7 Ma ago inferred from molasse deposits along the Altyn Tagh Fault. Earth and Planetary Science Letters, 235, 641–653.CrossRefGoogle Scholar
  47. Sun, X., and P. Wang, 2005: How old is the Asian monsoon system?-Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222, 181–222.CrossRefGoogle Scholar
  48. Vavrus, S., and J. E. Kutzbach, 2002: Sensitivity of the thermohaline circulation to increased CO2 and lowered topography. Geophys. Res. Lett., 29, 1546, 10.1029/2002GL014814.CrossRefGoogle Scholar
  49. Wang, H. J., 1994: Modelling the January and July climate of 9000 years before present. Adv. Atmos. Sci., 11, 319–326.CrossRefGoogle Scholar
  50. Wang, H. J., 2000: The seasonal climate and low frequency oscillation in the simulated mid-Holocene megathermal climate. Adv. Atmos. Sci., 17, 445–457.CrossRefGoogle Scholar
  51. Wang, H. J., 2002: The mid-Holocene climate simulated by a grid-point AGCM coupled with a biome model. Adv. Atmos. Sci., 19, 205–218.CrossRefGoogle Scholar
  52. Wang, J., Y. Wang, Z. Liu, J. Li, and P. Xi, 1999: Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 152, 37–47.CrossRefGoogle Scholar
  53. Wang, P., S. Clemens, L. Beaufort, P. Braconnot, G. Ganssen, Z. Jian, P. Kershaw, and M. Sarnthein, 2005: Evolution and variability of the Asian monsoon system: State of the art and outstanding issues. Quaternary Science Reviews, 24, 595–629.CrossRefGoogle Scholar
  54. Wei, J., and H. J. Wang, 2004: A possible role of solar radiation and ocean in the mid-Holocene East Asian monsoon climate. Adv. Atmos. Sci., 21, 1–12.CrossRefGoogle Scholar
  55. Xue, F., D. Jiang, X. Lang, and H. J. Wang, 2003: Influence of Mascarene high and Australian high on summer monsoon in East Asia: Ensemble simulation. Adv. Atmos. Sci., 20, 799–809.CrossRefGoogle Scholar
  56. Zeng, Q., C. Yuan, X. Zhang, X. Liang, and N. Bao, 1987: A global grid-point general circulation model. In collection of papers presented at the WMO/IUGG NWP Symposium, World Meteorol. Soc., Geneva, 421–430.Google Scholar
  57. Zhang, X., 1990: Dynamical framework of IAP nine-level atmospheric general circulation model. Adv. Atmos. Sci., 7, 66–77.Google Scholar
  58. Zhang, Z., H. J. Wang, Z. Guo, and D. Jiang, 2007a: Impacts of tectonic changes on the reorganization of the Cenozoic paleoclimatic patterns in China. Earth and Planetary Science Letters, 257, 622–634.CrossRefGoogle Scholar
  59. Zhang, Z., H. J. Wang, Z. Guo, and D. Jiang, 2007b: What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 317–331.CrossRefGoogle Scholar
  60. Zheng, H., C. M. Powell, D. K. Rea, J. Wang, and P. Wang, 2004: Late Miocene and mid-Pliocene enhancement of the East Asian monsoon as viewed from the land and sea. Global and Planetary Change, 41, 147–155.CrossRefGoogle Scholar
  61. Zheng, H., C. M. Powell, Z. An, J. Zhou, and G. Dong, 2000: Pliocene uplift of the northern Tibetan Plateau. Geology, 28, 715–718.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Dabang Jiang (姜大膀)
    • 1
    • 4
    Email author
  • Zhongli Ding (丁仲礼)
    • 2
  • Helge Drange
    • 3
  • Yongqi Gao (郜永祺)
    • 1
    • 3
  1. 1.Nansen-Zhu International Research Centre, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  3. 3.Nansen Environmental and Remote Sensing CentreBergenNorway
  4. 4.Max Planck Institute for BiogeochemistryJenaGermany

Personalised recommendations