Advances in Atmospheric Sciences

, Volume 24, Issue 2, pp 311–322

Improvements of a dynamic global vegetation model and simulations of carbon and water at an upland-oak forest

  • Mao Jiafu  (毛嘉富)
  • Wang Bin  (王斌)
  • Dai Yongjiu  (戴永久)
  • F. I. Woodward
  • P. J. Hanson
  • M. R. Lomas
Article
  • 120 Downloads

Abstract

The interest in the development and improvement of dynamic global vegetation models (DGVMs), which have the potential to simulate fluxes of carbon, water and nitrogen, along with changes in the vegetation dynamics, within an integrated system, has been increasing. In this paper, some numerical schemes and a higher resolution soil texture dataset were employed to improve the Sheffield dynamic Global Vegetation Model (SDGVM). Using eddy covariance-based measurements, we then tested the standard version of the SDGVM and the modified version of the SDGVM. Detailed observations of daily carbon and water fluxes made at the upland oak forest on the Walker Branch Watershed in Tennessee, USA offered a unique opportunity for these comparisons. The results revealed that the modified version of the SDGVM did a reasonable job of simulating the carbon and water flux and the variation of soil water content (SWC). However, at the end of the growing season, it failed to simulate the effect of the limitations on the soil respiration dynamics and as a result underestimated this respiration. It was also noted that the modified version overestimated the increase in the SWC following summer rainfall, which was attributed to an inadequate representation of the ground water and thermal cycle.

Key words

dynamic global vegetation models terrestrial carbon and water fluxes Eddy covariance calibration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R. K., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration. Guideline for computing crop water requirements. FAO Irrigation and Drainage Paper NO. 56, FAO of UN Rome, Italy, 51–202.Google Scholar
  2. Batjes, N. H., G. Fisher, F. O. Nachtergaele, V. S. Stolbovoy, and H. T. van Velthuizen, 1997: Soil data derived from WISE for uses in regional and global AEZ studies (Version 1.0). FAO/HASA/ISRIC, Laxenburg, 27pp.Google Scholar
  3. Bonan, G. B., 1996: A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user’s guide. Tech. Note, NCAR/TN-417+STR, 150pp.Google Scholar
  4. Bonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K.W. Oleson, 2003: A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Global Change Biology, 9, 1543–1566.CrossRefGoogle Scholar
  5. Cao, M. K., and F. I. Woodward, 1998: Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249–252.CrossRefGoogle Scholar
  6. Cao, M. K., D. P. Stephen, K. R. Li, B. Tao, J. Small, and X. Shao, 2003: Response of terrestrial carbon uptake to climate interannual variability in China. Global Change Biology, 9, 536–546.CrossRefGoogle Scholar
  7. Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20, 682–690.Google Scholar
  8. Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.CrossRefGoogle Scholar
  9. Cramer, W., and Coauthors, 2001: Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7(4), 357–373.CrossRefGoogle Scholar
  10. Dai, Y. J., and Coauthors, 2003: The common Land Model (CLM). Bull. Amer. Meteor. Soc., 84, 1013–1023.CrossRefGoogle Scholar
  11. Falge, E., and Coauthors, 2001: Gap filling strategies for long term energy flux datasets, a short communication. Agricultural and Forest Meteorology, 107, 71–77.CrossRefGoogle Scholar
  12. Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Change Biology, 4, 561–579.CrossRefGoogle Scholar
  13. Gerten, D., S. Schaphoff, U. Haberlandt, W. Lucht, and S. Sitch, 2004: Terrestrial vegetation and water balance: hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology, 286, 249–270.CrossRefGoogle Scholar
  14. Grace, J., and M. Rayment, 2000: Respiration in the balance. Nature, 404, 819–820.CrossRefGoogle Scholar
  15. Hanson, P. J., D. E. Todd, and J. S. Amthor, 2001a: A six year study of sapling and large-tree growth and mortality responses to natural and induced variability in precipitation and throughfall. Tree Physiology, 21, 345–358.Google Scholar
  16. Hanson, P. J., D. E. Todd, J. S. Riggs, M. E. Wolfe, and E. G. O’Neill, 2001b: Walker Branch Throughfall Displacement Experiment Data Report: Site characterization, system performance, weather, species composition and growth. ORNL/CDIAC-134, NDP-078A, 158pp.Google Scholar
  17. Hanson, P. J., D. E. Todd, M. A. Huston, J. D. Joslin, J. Croker, and R. M. Augé, 1998: Description and field performance of the Walker Branch Throughfall Displacement Experiment: 1993–1996. ORNL/TM-13586, 33pp.Google Scholar
  18. Hanson, P. J., E. G. O’Neill, M. L. S. Chambers, J. S. Riggs, J. D. Joslin, and M. H. Wolfe, 2003: Soil respiration and litter decomposition. North American Temperate Deciduous Forest Responses to Changing Precipitation Regimes. Hanson et al., Eds., Springer, New York, 163–189.Google Scholar
  19. Hanson, P. J., and Coauthors, 2004: Oak forest carbon and water simulations: Model comparisons and evaluations against independent data. Ecological Monographs, 74(3), 443–489.Google Scholar
  20. Harding, R. J., C. Huntingford, and P. M. Cox, 2000: Modeling long-term transpiration measurements from grassland in southern England. Agricultural and Forest Meteorology, 100, 309–322.CrossRefGoogle Scholar
  21. Irmak, S., A. Irmak, J. W. Jones, T. A. Howell, J. M. Jacobs, R. G. Allen, and G. Hoogenboom, 2003: Predicting Daily Net Radiation Using Minimum Climatological Data. Journal of Irrigation and Drainage Engineering, 129(4), 256–269.CrossRefGoogle Scholar
  22. New, M., M. Hulme, and P. D. Jones, 2001: Representing twentieth century spacetime climate variability, II, Development of a 1901–96 monthly grid of terrestrial surface climate. J. Climate, 13, 2217–2238.CrossRefGoogle Scholar
  23. Jackson, R. B., J. Canadell, J. R. Ehleringer, H. A. Mooney, O. E. Sala, and E. D. Schulze, 1996: A global analysis of root distributions for terrestrial biomes. Oecologia, 108, 389–411.CrossRefGoogle Scholar
  24. Johnson, D. W., and R. I. Van Hook, 1989: Analysis of Biogeochemical Cycling Processes in Walker Branch Watershed. Springer-Verlag, New York, USA, 401pp.Google Scholar
  25. Morales, P., and Coauthors, 2005: Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology, 11, 1–23.CrossRefGoogle Scholar
  26. Parton, W. J., and Coauthors, 1993: Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 7, 785–809.CrossRefGoogle Scholar
  27. Prentice, I. C., M. T. Sykes, and W. Cramer, 1993: A simulation model for the transient effects of climate change on forest landscapes. Ecological Modelling, 65, 51–70.CrossRefGoogle Scholar
  28. Ragab, R., J. W. Finch, and R. J. Harding, 1997: Estimation of groundwater recharge to chalk and sandstone aquifers using simple soil models. J. Hydrol., 190, 19–41.CrossRefGoogle Scholar
  29. Reichstein, M., and Coauthors, 2003: Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles, 17(4), 1104, doi:10.1029/2003GB002035.CrossRefGoogle Scholar
  30. Running, S. W., and E. R. Hunt, 1993: Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. Scaling Physiological Processes: Leaf to Globe. Ehleringer et al., Eds., Academic Press, Inc. New York, 141–158.Google Scholar
  31. Schenk, H. J., and R. B. Jackson, 2002: The Global Biogeography of Roots. Ecological Monagraph, 72, 311–328.CrossRefGoogle Scholar
  32. Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A simple biosphere model (SIB) for use within general circulation models. J. Atmos. Sci., 43, 505–531.CrossRefGoogle Scholar
  33. Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161–185.CrossRefGoogle Scholar
  34. Telles, E. C. C., and Coauthors, 2003: Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia. Global Biogeochemical Cycles, 17(2), 1040, doi:10.1029/2002GB001953.CrossRefGoogle Scholar
  35. Tian, H. Q., J. M. Melillo, D. W. Kicklighter, A. D. McGuire, B. Moore III, and C. J. Vorosmarty, 1999: Parameters for global ecosystem models. Nature, 399, 536.CrossRefGoogle Scholar
  36. Webb, R. S., C. E. Rosenzweig, and E. R. Levine, 1993: Specifying land surface characteristics in general circulation models: soil profile dataset and derived water-holding capacities. Global Biogeochemical Cycles, 7, 97–108.Google Scholar
  37. Wilson, K. B., and D. D. Baldocchi, 2001: Comparing independent estimates of carbon dioxide exchange over five years at a deciduous forest in the southern United States. J. Geophys. Res., 106, 34167–34178.CrossRefGoogle Scholar
  38. Woodward, F. I., 2002: Potential impacts of global elevated CO2 concentrations on plants. Current Opinion in Plant Biology, 5, 207–211.CrossRefGoogle Scholar
  39. Woodward, F. I., and C. P. Osborne, 2000: The representation of root processes in models addressing the response of vegetation to global change. New phytologist, 147, 223–232.CrossRefGoogle Scholar
  40. Woodward, F. I., and M. R. Lomas, 2004a: Simulating vegetation process along the Kalahari transect. Global Change Biology, 10, 383–392.CrossRefGoogle Scholar
  41. Woodward, F. I., and M. R. Lomas, 2004b: Vegetation dynamics-simulation responses to climatic change. Biological Reviews, 79, 643–670.CrossRefGoogle Scholar
  42. Woodward, F. I., T. M. Smith, and W. R. Emanuel, 1995: A global primary productivity and phytogeography model. Global Biogeochemical Cycles, 9, 471–490.CrossRefGoogle Scholar
  43. Woodward, F. I., M. R. Lomas, and S. E. Lee, 2001: Predicting the future productivity and distribution of global terrestrial vegetation. Terrestrial Global Productivity. Roy et al., Eds., Academic Press, San Diego, USA, 521–541.Google Scholar
  44. Xu, M., and Y. Qi, 2001a: Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemical Cycles, 15, 687–696.CrossRefGoogle Scholar
  45. Xu, M., and Y. Qi, 2001b: Soil surface CO2 efflux and its variation in a young ponderosa pine plantation in the Sierra Nevada Mountains, California. Global Change Biology, 7, 667–677.CrossRefGoogle Scholar
  46. Zeng, X. B., 2001: Global vegetation root distribution for land modeling. Journal of Hydrometeorology, 2, 525–530.CrossRefGoogle Scholar
  47. Zobler, L., 1986: A world soil file for global climate modeling. Tech. Memo. NASA/87802, 33pp.Google Scholar

Copyright information

© Science Press 2007

Authors and Affiliations

  • Mao Jiafu  (毛嘉富)
    • 1
    • 2
  • Wang Bin  (王斌)
    • 1
  • Dai Yongjiu  (戴永久)
    • 3
  • F. I. Woodward
    • 4
  • P. J. Hanson
    • 5
  • M. R. Lomas
    • 4
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of the Chinese Academy of SciencesBeijingChina
  3. 3.School of GeographyBeijing Normal UniversityBeijingChina
  4. 4.Centre for Terrestrial Carbon Dynamics and Department of Animal and Plant SciencesUniversity of SheffieldUK
  5. 5.Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations