Advertisement

Advances in Atmospheric Sciences

, Volume 23, Issue 1, pp 14–22 | Cite as

The impact of the storm-induced SST cooling on hurricane intensity

  • Tong Zhu
  • Da-Lin Zhang
Article

Abstract

The effects of storm-induced sea surface temperature (SST) cooling on hurricane intensity are investigated using a 5-day cloud-resolving simulation of Hurricane Bonnie (1998). Two sensitivity simulations are performed in which the storm-induced cooling is either ignored or shifted close to the modeled storm track. Results show marked sensitivity of the model-simulated storm intensity to the magnitude and relative position with respect to the hurricane track. It is shown that incorporation of the storm-induced cooling, with an average value of 1.3°C, causes a 25-hPa weakening of the hurricane, which is about 20 hPa per 1°C change in SST. Shifting the SST cooling close to the storm track generates the weakest storm, accounting for about 47% reduction in the storm intensity. It is found that the storm intensity changes are well correlated with the air-sea temperature difference. The results have important implications for the use of coupled hurricane-ocean models for numerical prediction of tropical cyclones.

Key words

SST feedback hurricane intensity numerical modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao, J.-W., J. M. Wilczak, J.-K. Choi, and L. H. Kantha, 2000: Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 2190–2210.Google Scholar
  2. Bender, M. A., I. Ginis, and Y. Kurihara, 1993: Numerical simulations of tropical cyclone-ocean interaction with a high resolution coupled model. J. Geophys. Res., 98, 23245–23263.Google Scholar
  3. Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917–946.Google Scholar
  4. Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941–3961.Google Scholar
  5. Businger, J. A., 1982: Equations and concepts. Atmospheric Turbulence and Air Pollution Modeling, F. T. M. Nieuwstadt and H. van Dop, Eds., Reidel, Dordrecht, 1–36.Google Scholar
  6. Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859–881.CrossRefGoogle Scholar
  7. Chang, S. W., and R. A. Anthes, 1979: The mutual response of the tropical cyclone and the ocean. J. Phys. Oceanogr., 9, 128–135.CrossRefGoogle Scholar
  8. Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639–940.Google Scholar
  9. Chelton, D. B., F. J. Wentz, C. L. Gentemann, R. A. de Szoeke, and M. G. Schlax, 2000: Satellite microwave SST observations of transequatorial tropical instability waves. Geophys. Res. Lett., 27, 1239–1242.CrossRefGoogle Scholar
  10. Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 1550–1561.Google Scholar
  11. Dudhia, J., 1993: A nonhydrostatic version of the Penn State-NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 1493–1513.Google Scholar
  12. Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–604.Google Scholar
  13. Emanuel, K. A., 1988: Toward a general theory of hurricanes. American Scientist, 76, 371–379.Google Scholar
  14. Emanuel, K. A., 1991: The theory of hurricanes. Annual Review of Fluid Mechanics, 23, 179–196.CrossRefGoogle Scholar
  15. Fisher, E. L., 1958: Hurricane and the sea surface temperature field. J. Meteor., 15, 328–333.Google Scholar
  16. Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316pp.Google Scholar
  17. Grell, G. A., J.Dudhia, and D. R.Stauffer, 1995: A description of the Fifth Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech Note NCAR/TN-398+STR, 138pp. [Available from NCAR Publications Office, P. O. Box 3000, Boulder, CO 80307-3000.]Google Scholar
  18. Holland, G. J., 1997: Maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541.CrossRefGoogle Scholar
  19. Hong, X., S. W. Chang, S. Raman, L. K. Shay, and R. Hodur, 2000: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev., 128, 1347–1365.Google Scholar
  20. Jacob, S. D., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3-D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 1407–1429.CrossRefGoogle Scholar
  21. Large, W. G., and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12, 464–482.CrossRefGoogle Scholar
  22. Leipper, D., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24, 182–196.CrossRefGoogle Scholar
  23. Liu, Y., D.-L. Zhang and M.K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 2597–2616.Google Scholar
  24. Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3–40.CrossRefGoogle Scholar
  25. Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175.Google Scholar
  26. Riehl, H., 1950: A model for hurricane formation. J. Appl. Phys., 21, 917–925.CrossRefGoogle Scholar
  27. Sakaida, F., H. Kawamura, and Y. Toba, 1998: Sea surface cooling caused by typhoons in the Tohuku area in August 1989. J. Geophys. Res., 103 (C1), 1053–1065.CrossRefGoogle Scholar
  28. Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmospheric-ocean model. J. Atmos. Sci., 56, 642–651.CrossRefGoogle Scholar
  29. Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15467–15472.Google Scholar
  30. Sutyrin, G. G., and A. P. Khain, 1984: Effect of the ocean-atmosphere interaction on the intensity of a moving tropical cyclone. Atmospheric and Oceanic Physics, 20, 787–794.Google Scholar
  31. Tao, W.-K., and J. Simpson, 1993: The Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 35–72.Google Scholar
  32. Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model—TCM3. Part I: Description of the model and control experiment. Mon. Wea. Rev., 129, 1270–1294.Google Scholar
  33. Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 1594–1609.CrossRefGoogle Scholar
  34. Zhang, D.-L., Y. Liu, and M. K. Yau, 1999: Surface winds at landfall of Hurricane Andrew (1992)—A reply. Mon. Wea. Rev., 127, 1711–1721.Google Scholar
  35. Zhu, Tong, D.-L. Zhang, and F. Weng, 2002: Impact of the advanced microwave sounding unit measurements on hurricane prediction. Mon. Wea. Rev., 130, 2416–2432.Google Scholar
  36. Zhu, Tong, D.-L. Zhang, and F. Weng, 2004: Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes. Mon. Wea. Rev., 132, 225–241.Google Scholar

Copyright information

© Science Press 2006

Authors and Affiliations

  • Tong Zhu
    • 1
  • Da-Lin Zhang
    • 2
  1. 1.CIRA/CSU at NOAA/NESDIS/ORACamp SpringsUSA
  2. 2.Department of MeteorologyUniversity of MarylandCollege ParkUSA

Personalised recommendations