Advertisement

Advances in Atmospheric Sciences

, Volume 20, Issue 2, pp 185–193 | Cite as

Application of TRMM/PR data for numerical simulations with mesoscale model MM5

  • Xu Zhifang
  • Ge Wenzhong
  • Dang Renqing
  • Toshio Iguchi
  • Takao Takada
Article

Abstract

Numerical simulations of two heavy rainfall cases in the Changjiang-Huaihe River basin are performed with TRMM/PR (precipitation radar) data incorporated into the PSU/NCAR meso scale model MM5. The mixing ratio of rainwater q r is obtained from the R −q r relation (R is the rainfall rate), and the mixing ratio of water vapor q v in the model is replaced by q 1v = q v+q r. Then, TRMM/PR data are used to modify humidity analysis obtained from conventional radiosonde data, and sensitivity experiments (STE) are performed and compared to control experiments (CTL). Results show that both the heavy rainfall distribution and its maximum amounts from STE are improved compared with those from CTL.

Key words

TRMM/PR numerical simulation mixing ratio of rainwater mixing ratio of vapor heavy rainfall spin-up problem cumulus parameterization scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115, 1053–1070.CrossRefGoogle Scholar
  2. Battan, L. J., 1973: Radar Observations of the Atmosphere. University of Chicago Press, 324pp.Google Scholar
  3. Ge Wenzhong, Dang Renqing, Jiang Dunchun, Xu Hui, and Takao Takeda, 1998: Application of radar and satellite data for numerical simulation of heavy rainfall. International Symposium on Mesoscale Water Cycle and Heavy Rainfall in East Asia. Nagoya, Japan, 2–4 Feb. 123–126.Google Scholar
  4. Ge Wenzhong, Dang Renqing, Jiang Dunchun, Xu Hui and Takao Takeda, 1999: Application of radar and satellite data for real time numerical experiment and simulation of heavy rainfall. Workshop on Mesoscale System in Meiyu/Baiu Front and Hydrological Cycle. GAME/HUBEX Project Office. Xi’An, China, 3–9 Nov. 171–174.Google Scholar
  5. Ge Wenzhong, Dang Renqing, Xu Zhifang, and Takao Takeda, 2000: The impact of assimilations of radar and satellite data on numerical simulation of heavy rainfall. International GAME/HUBEX Workshop, HoKKaido Univ., Sapporo, 93–96.Google Scholar
  6. Grell A. G., J. Dudhia, and D. R. Stauffer, 1993: A description of the fifth generation PSU/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398 107pp.Google Scholar
  7. Guo Xia, Dang Renqing, and Ge Wenzhong, 1999: The use of radar data in the numerical simulation of heavy rainfall in the Changjiang-Huaihe River basin. Journal of Tropical Meteorology, 15(4), 356–362 (in Chinese).Google Scholar
  8. Huggle, A., W. Schmid, and A. Waldvogel, 1996: Raindrop size distributions and the radar bright band. J. Appl. Meteor., 35, 1688–1701.CrossRefGoogle Scholar
  9. Jiang Dunchun, Dang Renqing, and Cheng Lianshou,1994: The use of satellite data in the numerical prediction model for the study of the heavy rainfall caused by typhoon. Journal of Tropical Meteorology, 10(4), 318–324 (in Chinese).Google Scholar
  10. Kasahara, A. R. C. Balgovind, and B. B. Katz, 1988: Use of satellite imagery data for improvement in the analysis of divergent wind in the tropics. Mon. Wea. Rev., 116, 866–883.CrossRefGoogle Scholar
  11. Mills, G. A., and N. E. Davidson, 1987: Tropospheric moisture profile from digital IR satellite imagery: System description and analysis/forecast impact. Aust. Meteor. Mag., 35, 109–118.Google Scholar
  12. Ninomiya, K., and K. Kurihara, 1987: Forecast experiment of a longlived mesoscale convective system in Baiu frontalzone. J. Meteor. Soc. Japan, 65, 885–899.Google Scholar
  13. Sun, Juanzhen, and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661.CrossRefGoogle Scholar
  14. Turpeiner, O. M., L. Garand, R. Benoit, and M. Roch, 1990: Diabatic initialization of the Canadian Regional Finite Element (RFE) model using satellite data. Mon. Wea. Rev., 118, 1381–1407.CrossRefGoogle Scholar
  15. Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate. Appl. Meteor., 22, 1764–1775.CrossRefGoogle Scholar
  16. Walcott, S. W., and T. T. Warner, 1981: A humidity initialization utilizing surface and satellite data. Mon. Wea. Rev., 109, 1989–1998.CrossRefGoogle Scholar
  17. Wang, W., and T. T. Warner, 1988: Use of four-dimensional data assimilation by Newtonian relaxation and latent-heat forcing to improve a mesoscale-model precipitation forecast: A case study. Mon. Wea. Rev., 116, 2593–2613.CrossRefGoogle Scholar
  18. Wang Pengfei, and Li Zihua, 1989: Microcosmic Cloud Physics. Lin Yuchen, Ed., China Meteorological Press, 163–164.Google Scholar
  19. Xu Shaozu, Lei Lianke, Zhang Xueru, Gen Biao, and Xie Juyin, 1987: The characteristics of the microphysical structure of Mei-yu precipitation in the Nanjing area. Journal of Nanjing University, Natural Sciences, 23(1), 175–185.Google Scholar

Copyright information

© Advances in Atmospheric Sciences 2003

Authors and Affiliations

  • Xu Zhifang
    • 1
  • Ge Wenzhong
    • 1
  • Dang Renqing
    • 1
  • Toshio Iguchi
    • 2
  • Takao Takada
    • 3
  1. 1.Department of Atmospheric SciencesNanjing UniversityNanjing
  2. 2.Communications Research LaboratoryTokyoJapan
  3. 3.Institute for Hydrospheric Atmospheric SciencesNagoya UniversityJapan

Personalised recommendations