Advances in Atmospheric Sciences

, Volume 20, Issue 2, pp 173–184 | Cite as

On the decadal and interdecadal variability in the Pacific Ocean

  • Yang Haijun
  • Zhang Qiong


The Pacific decadal and interdecadal oscillation (PDO) has been extensively explored in recent decades because of its profound impact on global climate systems. It is a long-lived ENSO-like pattern of Pacific climate variability with a period of 10–30 years. The general picture is that the anomalously warm (cool) SSTs in the central North Pacific are always accompanied by the anomalously cool (warm) SSTs along the west coast of America and in the central east tropical Pacific with comparable amplitude. In general, there are two classes of opinions on the origin of this low-frequency climate variability, one thinking that it results from deterministically coupled modes of the Pacific ocean-atmosphere system, and the other, from stochastic atmospheric forcing. The deterministic origin emphasizes that the internal physical processes in an air-sea system can provide a positive feedback mechanism to amplify an initial perturbation, and a negative feedback mechanism to reverse the phase of oscillation. The dynamic evolution of ocean circulation determines the timescale of the oscillation. The stochastic origin, however, emphasizes that because the atmospheric activities can be thought as having no preferred timescale and are associated with an essentially white noise spectrum, the ocean response can manifest a red peak in a certain low frequency range with a decadal to interdecadal timescale. In this paper, the authors try to systematically understand the state of the art of observational, theoretical and numerical studies on the PDO and hope to provide a useful background reference for current research.

Key words

climate system Pacific decadal oscillation deterministic origin stochastic origin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnett, T. P., D. W. Pierce, M. Latif, D. Dommenget, and R. Saravanan, 1999a: Interdecadal interactions between the tropics and midlatitudes in the Pacific basin. Geophys. Res. Lett., 26(5), 615–618.CrossRefGoogle Scholar
  2. Barnett, T. P., D. W. Pierce, R. Saravanan, N. Schneider, D. Dommenget, and M. Latif, 1999b: Origins of the midlatitude Pacific decadal variability. Geophys. Res. Lett, 26(10), 1453–1456.CrossRefGoogle Scholar
  3. Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172.CrossRefGoogle Scholar
  4. Cane, M. A., and S. E. Zebiak, 1985: A theory for El Ni no and the Southern Oscillation. Science, 228, 1084–1087.CrossRefGoogle Scholar
  5. Cessi, P., and F. Paparella, 2001: Excitation of basin modes by ocean-atmosphere coupling. Geophys. Res. Lett, 28(12), 2437–2440.CrossRefGoogle Scholar
  6. Cessi, P., and S. Louazel, 2001: Decadal oceanic response to stochastic wind forcing. J. Phys. Oceanogr., 31(10), 3020–3029.CrossRefGoogle Scholar
  7. Cessi, P., and F. Primeau, 2001: Dissipative selection of low-frequency modes in a reduced-gravity basin. J. Phys. Oceanogr., 31(1), 127–137.CrossRefGoogle Scholar
  8. Chao, Y., M. Ghil, and J. C. McWilliams, 2000: Pacific interdecadal variability in this century’s SSTs. Geophys. Res. Lett., 27(15), 2261–2264.CrossRefGoogle Scholar
  9. Deser, C., M. A. Alexander, and M. S. Timlin, 1996: Upper-ocean thermal variations in the North Pacific during 1970–1991. J. Climate, 9(8), 1840–1855.CrossRefGoogle Scholar
  10. Feldstein, S. B., and W. A. Robinson, 1994: Comments on ‘Spatial structure of ultra-low frequency variability in a simple atmospheric circulation model’. Quart. J. Roy. Meteor. Soc., 120, 735–739.Google Scholar
  11. Frankignoul, C., P. Muller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27(8), 1533–1546.CrossRefGoogle Scholar
  12. Giese, B. S., and J. A. Carton, 1999: Interannual and decadal variability in the tropical and midlatitude Pacific Ocean. J. Climate, 12(12), 3402–3418.CrossRefGoogle Scholar
  13. Graham, N. E., 1994: Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: Observations and model results. Climate Dyn., 10, 135–162.CrossRefGoogle Scholar
  14. Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805–807.CrossRefGoogle Scholar
  15. Hare, S. R., and N. J. Mantua, 2000: Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr., 47, 103–145.CrossRefGoogle Scholar
  16. Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813–829.CrossRefGoogle Scholar
  17. Huang, R. X., and B. Qiu, 1994: Three-dimensional structure of the wind driven circulation in the subtropical North Pacific. J. Phys. Oceanogr., 24, 1608–1622.CrossRefGoogle Scholar
  18. Jin, F. F., 1997: A theory of interdecadal climate variability of the North Pacific ocean-atmosphere system. J. Climate, 10, 1821–1835.CrossRefGoogle Scholar
  19. Jin, F. F., 2001: Low-frequency modes of tropical ocean dynamics. J. Climate, 14, 3874–3881.CrossRefGoogle Scholar
  20. Jones, P. D., 1994: Hemispheric surface air temperature variations: A reanalysis and an update to 1993. J. Climate, 7, 1794–1802.CrossRefGoogle Scholar
  21. Knutson, T. R., and S. Manabe, 1998: Model assessment of decadal variability and trends in the tropical Pacific Ocean. J. Climate, 11, 2273–2296.CrossRefGoogle Scholar
  22. Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634–637.CrossRefGoogle Scholar
  23. Latif, M., and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9, 2407–2423.CrossRefGoogle Scholar
  24. Liu, Z., L. Wu, B. Gallimore, and R. Jacob, 2002: Search for the origins of Pacific decadal climate variability. Geophys. Res. Lett, 29(10), doi: 10.1029/2001GL013735.Google Scholar
  25. Liu, Z., S. G. H. Philander, and R. C. Pacanowski, 1994: A GCM study of tropical-subtropical upper ocean water exchange. J. Phys. Oceanogr., 24(12), 2606–2623.CrossRefGoogle Scholar
  26. Liu, Z. 2002: How long is the memory of tropical ocean dynamics? J. Climate, 15(12), 3518–3522.CrossRefGoogle Scholar
  27. Lukas, R., 2001: Freshening of the upper thermocline in the North Pacific subtropical gyre associated with decadal changes of rainfall. Geophys. Res. Lett., 28(18), 3485–3488.CrossRefGoogle Scholar
  28. Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilation thermocline. J. Phys. Oceanogr., 13, 292–309.CrossRefGoogle Scholar
  29. Lysne, J., P. Chang, and B. Giese, 1997: Impact of the extratropical Pacific on equatorial variability. Geophys. Res. Lett, 24(21), 2589–2592.CrossRefGoogle Scholar
  30. Mautua, J. N., A. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1080.CrossRefGoogle Scholar
  31. McCreary, J., and P. Lu, 1994: On the interaction between the subtropical and the equatorial oceans: The subtropical cell. J. Phys. Oceanogr., 24, 466–497.Google Scholar
  32. Minobe, S., 1997: A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683–686.CrossRefGoogle Scholar
  33. Minobe, S., 1999: Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys. Res. Lett., 26, 855–858.CrossRefGoogle Scholar
  34. Munnich, M., M. Latif, S. Venzke, and E. M. Reimer, 1998: Decadal oscillations in a simple coupled model. J. Climate, 11(12), 3309–3319.CrossRefGoogle Scholar
  35. Nakamura, H., G. Lin, and T. Yamagata, 1997: Decadal climate variability in the North Pacific during the recent decades. Bull. Amer. Meteor. Soc., 78(10), 2215–2225.CrossRefGoogle Scholar
  36. Neelin, J. D., 1990: A hybrid coupled general circulation model for El Nino studies. J. Atmos. Sci., 47, 674–693.CrossRefGoogle Scholar
  37. Overland, J. E., S. Salo, and J. M. Adams, 1999: Salinity signature of the Pacific Decadal Oscillation. Geophys. Res. Lett, 26(9), 1337–1340.CrossRefGoogle Scholar
  38. Parker, C. K., C. K. Folland, and M. Jackson, 1995: Marine surface temperature: Observed variations and data requirements. Climate Change, 31, 559.CrossRefGoogle Scholar
  39. Pierce, D. W., and T. P. Barnett, 2000: Connections between the Pacific Ocean tropics and midlatitudes on decadal timescales. J. Climate, 13(3), 1173–1194.CrossRefGoogle Scholar
  40. Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, San Diego, Calif., 293 pp.Google Scholar
  41. Saravanan, R., and J. C. McWilliams, 1997: Stochasticity and spatial resonance in interdecadal climate fluctuations. J. Climate, 10(9), 2299–2320.CrossRefGoogle Scholar
  42. Schneider, N., A. J. Miller, M. A. Alexander, and C. Deser, 1999a: Subduction of decadal North Pacific temperature anomalies: Observations and dynamics. J. Phys. Oceanogr., 29(5), 1056–1070.CrossRefGoogle Scholar
  43. Schneider, N., S. Venzke, A. J. Miller, D. W. Pierce, T. P. Barnett, C. Deser, and M. Latif, 1999b: Pacific thermocline bridge revisited. Geophys. Res. Lett., 26(9), 1329–1332.CrossRefGoogle Scholar
  44. Schneider, N., 2000: A decadal spiciness mode in the tropics. Geophys. Res. Lett., 27(2), 257–260.CrossRefGoogle Scholar
  45. Stephens, M., Z. Liu, and H. Yang, 2001: Evolution of subduction planetary waves with application to North Pacific decadal thermocline variability. J. Phys. Oceanogr., 31(7), 1733–1745.CrossRefGoogle Scholar
  46. Sura, P., F. Lunkeit, and K. Fraedrich, 2000: Decadal. variability in a simplified wind-driven ocean model. J. Phys. Oceanogr., 30(8), 1917–1930.CrossRefGoogle Scholar
  47. Trenberth, K. E., 1990: Recent observed interdecadal climate changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc., 71, 988–993.CrossRefGoogle Scholar
  48. Timmermann, A., M. Latif, R. Voss, and A. Grotzner, 1998: Northern Hemispheric interdecadal variability: A coupled air-sea mode. J. Climate, 11(8), 1906–1931.Google Scholar
  49. Wang, B., and S. I. An, 2002: A mechanism for decadal changes of ENSO behavior: Roles of background wind changes. Clim. Dynamics, 18, 475–486.CrossRefGoogle Scholar
  50. Wang, D. X., and Z. Liu, 2000: The pathway of the interdecadal variability in the Pacific Ocean. Chinese Science Bulletin, 45(17), 1555–1561.CrossRefGoogle Scholar
  51. White, W.B., and D. R. Cayan, 1998: Quasi-periodicity and global symmetries in interdecadal upper ocean temperature variability. J. Geophys. Res., 103(C10), 21335–21354.CrossRefGoogle Scholar
  52. Wu, L., Z. Liu, R. Gallimore, and R. Jacob, 2003: Pacific decadal variability: the tropical Pacific model, the North Pacific mode. J. Climate, (in press).Google Scholar
  53. Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 1004–1020.CrossRefGoogle Scholar
  54. Zhang, R. H., L. M. Rothstein, and A. J. Busalacchi, 1998: Origin of upper-ocean warming and El Nino change on decadal scales in the tropical Pacific Ocean. Nature, 391, 879–883.CrossRefGoogle Scholar

Copyright information

© Advances in Atmospheric Sciences 2003

Authors and Affiliations

  • Yang Haijun
    • 1
  • Zhang Qiong
    • 2
  1. 1.Department of Atmospheric Science, School of PhysicsPeking UniversityBeijing
  2. 2.State Key Laboratory of Atmospheric Science and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijing

Personalised recommendations