Advances in Atmospheric Sciences

, Volume 19, Issue 3, pp 513–527 | Cite as

Development and validation of a simple frozen soil parameterization scheme used for climate model

  • Zhang Yu
  • Lu Shihua


A simple frozen soil parameterization scheme is developed based on NCAR LSM and the effects of re-vised scheme are investigated using Former Soviet Union (FSU) 6 stations measurement data. In the revised model, soil ice content and the energy change in phase change process is considered; the original soil thermal conductivity scheme is replaced by Johanson scheme and the soil thermal and hydraulic properties is modi-fied depending on soil ice content. The comparison of original model with revised model results indicates that the frozen soil scheme can reasonably simulate the energy budget in soil column and the variation of thermal and hydraulic properties as the soil ice content changes. Soil moisture in spring is decreased because of the reduction of infiltration and increment of runoff. Consequently, the partition of heat flux and surface temperature changes correspondingly.

Key words

Frozen soil parameterization Land surface model Climate model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bonan, G. B., 1996: A Land Surface Model (LSM version 1.0) for Ecological, Hydrological, and Atmospheric Stud-ies: Technical Description and User's Guide, NCAR Tech Note NCAR J TN417+STR.Google Scholar
  2. Cherkauer, K. A., and D. P. Lettenmaier, 1999: Hydrologic effects of frozen soils in the upper Mississippi River ba-sin. J. Gcophys. Res., 104, 19599–19610.CrossRefGoogle Scholar
  3. Clapp, R. B., and G. M. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14,601–604.Google Scholar
  4. Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20, 682–690.Google Scholar
  5. Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR Community Climate Model, NCAR Tech. Note. TN-387+STR, 72pp.Google Scholar
  6. Farouki, O. T., 1981: The thermal properties of soil in cold regions. Cold Regions Sci. Tech., 5, 67–75.CrossRefGoogle Scholar
  7. Farouki, O. T., 1986: Thermal Properties of Soils. Series on rock and soil mechanics, Vol.11. Trans. Tech. Pub., 136pp.Google Scholar
  8. Guymon, G. L., and J. N. Luthin, 1974: A coupled heat and moisture transport model for arctic soils. Water Resour. Res., 10, 995–1001.Google Scholar
  9. Harlan, R. L., 1973: Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour. Res., 9, 1314–1323.CrossRefGoogle Scholar
  10. Jame, Y. W., and D. I. Norum, 1980: Heat and mass transfer in a freezing unsaturated porous medium. Water Resour. Res., 117, 811–819.Google Scholar
  11. Johanson, O., 1975: Thermal conductivity of soils. Ph. D. dissertation, University of Trondheim, 236pp.Google Scholar
  12. Kennedy, I., and B. Sharatt, 1998: Model comparison to simulate soil frost depth. Soil Science, 163,636–645.CrossRefGoogle Scholar
  13. Koren, V., and J. Schaake, K. Mitchell, O. Y. Duan, F. Chen, and J. M. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104, 19569–19585.CrossRefGoogle Scholar
  14. Li Shuxun, and Cheng Guodong, 1995: Problem of Heat and Moisture Transfer in Freezing and Thawing Soils. Lanzhou University press, 203pp.Google Scholar
  15. O'Neill, K., and R. D. Miller, 1985: Exploration of a rigid-ice of frost heave. Water Resour. Res., 21, 281–196.Google Scholar
  16. Pauwels, V. R. N., and E. F. Wood, 1999: A soil-vegetation-atmosphere transfer scheme for the modeling of water and energy balance processes in high latitudes. 1. Model improvements. J. Geophys. Res., 104, 27811–27822.CrossRefGoogle Scholar
  17. Peter-Lidard, C. D., E. Blackrurn, X. Liang, and E. F. Wood, 1998: The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J. Almos. Sci., 55, 1209–1224.CrossRefGoogle Scholar
  18. Robock, A., K. Y. Vinnikov, C. A. Schlosser, N. A. Speranskaya, and Y. Xue, 1995: Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J. Cli-mate., 8, 15–35.Google Scholar
  19. Schlosser, C. A., A. G. Slater, A. Robock, A. J. Pitman, K. Y. Vinnikov, A. Henderson-Sellers, N. A. Speranskaya. K. Mitchell, and the PILPS 2(d) Contributors, 2000: Simulation of a boreal grassland hydrology at vaidai, russia: PILPS Phase 2(d). Mon. Wea. Rev., 128, 301–321.CrossRefGoogle Scholar
  20. Sellers, P. J., D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field, D. A. Dazlich, C. Zhang, G. D. Collelo, and L. Bounoua, 1996: A revised land-surface parameterization (SiB2) for atmospheric GCMs. 1. Model formulation. J. Climate, 9, 676–705.CrossRefGoogle Scholar
  21. Slater, A. G., A. J. Pitman, and C. E. Desborough, 1998: Simulation of freeze-thaw cycles in a general circulation model land surface scheme. J. Geophys. Res., 103, 11303–11312.CrossRefGoogle Scholar
  22. Sun, S. F., J. M. Jin, and Y. Xue, 1999: A simple snow-atmosphere-soil transfer model. J. Geophys. Res., 104, 19587–19597.CrossRefGoogle Scholar
  23. Xue, Y., and J. Shukla, 1991: The influence of land properties on Sahel climate. Part I: Desertification. J. Climate, 6, 2232–2245.CrossRefGoogle Scholar
  24. Xue, Y., F. J. Zeng, and C. A. Schlosser, 1996: SSiB and its sensitivity to soil properties: A case study using HAPEX-Mobihy data. Global Planetary Change, 13, 183–194.CrossRefGoogle Scholar
  25. Yang, Z. L., R. E. Dickinson, A. Robock, and K. Y. Vinnikov, 1997: Validation of the snow submodel of the biosphere-atmosphere transfer scheme with russian snow cover and meteorological observational data. J. Cli-mate, 10,353–373.Google Scholar

Copyright information

© Advances in Atmospheric Sciences 2002

Authors and Affiliations

  • Zhang Yu
    • 1
  • Lu Shihua
    • 1
  1. 1.Cola and Arid Regions Environment and Engineering Research Institute, Chinese Academy of SciencesLanzhou

Personalised recommendations