Biology and Fertility of Soils

, Volume 55, Issue 4, pp 365–381 | Cite as

Metagenomic exploration of the interactions between N and P cycling and SOM turnover in an apple orchard with a cover crop fertilized for 9 years

  • Wei Zheng
  • Zhiyuan Zhao
  • Fenglian Lv
  • Rui Wang
  • Qingli Gong
  • Bingnian ZhaiEmail author
  • Zhaohui Wang
  • Zhengyang Zhao
  • Ziyan Li
Original Paper


We investigated the types of metabolism and genes involved with N and P reactions, and SOM turnover as well as their interaction was monitored in an apple orchard by metagenome sequencing. The field experiment included plots with and without a cover crop but with weed control, and two subplots with or without chemical fertilizer. The relative abundances of genes involved with N reactions (nirB, nirD, amoB, gltB, and GDH2), P reactions (phoA, pqqC, and E3.1.3.8), and plant degradation were higher in the cover cropped soil after treated with chemical fertilizer compared with the other treatments. The cover crop had a greater effect on the gene network than the chemical fertilizer and it improved the number of links in the network compared with no cover crop. The betweenness centrality scores showed that the genes involved in N and P reactions were important for SOM turnover as well as for N and P reactions. Chemical fertilizer provided more available N and P for SOM turnover in the cover-cropped soil, thereby improving the soil fertility. Finally, the available N and P contents, SOM, and apple yield were increased by the application of chemical fertilizer and cropping with cover plant due to the promotion of interactions among the N and P reactions (as hypothesized by considering abundances of genes involved in both nutrient cycles), and SOM. Our results provide new insights into the interactions between N and P reactions in soil and SOM turnover from the genetic level in an apple orchard with a cover crop and when subjected to chemical fertilization.


Apple production Functional gene Grass cover Inositol phosphate metabolism Metagenome sequencing Plant degradation 


Funding information

This study was supported by the Special Fund for Agro-scientific Research in the Public Interest of China (201303104), Agriculture Science Technology Achievement Transformation Fund of Shaanxi (NYKJ-2015-17), the Project of Promoting Agricultural Science and Technology Demonstration of Yangling (2015-TS-18), and the Scientific and Technological Achievements Promotion Project of Northwest A & F University (TGZX2014-16).

Supplementary material

374_2019_1356_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1.65 mb)


  1. Abdelal AT (1979) Arginine catabolism by microorganisms. Annu Rev Microbiol 33:139–168CrossRefGoogle Scholar
  2. Acuña JJ, Durán P, Lagos LM, Ogram A, de la Luz MM, Jorquera MA (2016) Bacterial alkaline phosphomonoesterase in the rhizospheres of plants grown in Chilean extreme environments. Biol Fertil Soils 52:763–773CrossRefGoogle Scholar
  3. Bach HJ, Hartmann A, Schloter M, Munch JC (2001) PCR primers and functional probes for amplification and detection of bacterial genes for extracellular peptidases in single strains and in soil. J Microbiol Meth 44:173–182CrossRefGoogle Scholar
  4. Bach HJ, Tomanova J, Schloter M, Munch JC (2002) Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. J Microbiol Meth 49:235–245CrossRefGoogle Scholar
  5. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee YS, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Wang J (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703CrossRefGoogle Scholar
  6. Banerjee S, Baah-AcheamfourM CCN, Bissett A, Richardson AE, Siddique T, Bork E, Chang S (2016a) Determinants of bacterial communities in Canadian agroforestry systems. Environ Microbiol 18:1805–1816CrossRefGoogle Scholar
  7. Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE (2016b) Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem 97:188–198CrossRefGoogle Scholar
  8. Bationo A, Kihara J, Vanlauwe B, Waswa B, Kimetu J (2006) Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agric Syst 97:13–25Google Scholar
  9. Behera BC, Singdevsachan SK, Mishra RR, Dutta SK, Thatoi HN (2014) Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—a review. Biocatal Agri Biotechnol 3:97–110CrossRefGoogle Scholar
  10. Bei S, Zhang Y, Li T, Christie P, Li X, Zhang J (2018) Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil. Agric Ecosyst Environ 260:58–69CrossRefGoogle Scholar
  11. Bekunda MA, Bationo A, Ssali H (1997) Fertility management in Africa: a review of selected research trials. In: Buresh RT, Sanchez PA, Calhoun F (eds) Replenishing soil fertility in Africa. SSSA Special publication. Soil Sci Soc Am J 51:63–79Google Scholar
  12. Bonde TA, Nielsen TH, Miller M, Sorensen J (2001) Arginine ammonification assays as a rapid index of gross N mineralization. Biol Fertil Soils 34:179–184CrossRefGoogle Scholar
  13. Bremner JM (1996) Nitrogen total In: Sparks DL (Ed) Methods of soil analysis part 3: chemical methods. Soil Science Society of America Inc, Madison, WI, pp. 1085–1121Google Scholar
  14. Brown CM (1980) Ammonia assimilation and utilization in bacteria and fungi J.W. Payne (Ed.), Microorganisms and nitrogen sources, John Wiley & Sons Ltd, Chichester, UK, pp. 511–535Google Scholar
  15. Bru D, Ramette A, Saby N, Dequiedt S, Ranjard L, Jolivet C, Arrouays D, Philippot L (2011) Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J 5:532–542CrossRefGoogle Scholar
  16. Cardina J, Hartwig NL, Lukezic FL (1986) Herbicidal effects on crownvetch rhizobia and nodule activity. Weed Sci 34:338–343Google Scholar
  17. Chávez-Romero Y, Navarro-Noya YE, Reynoso-Martínez SC, Sarria-Guzmán Y, Govaerts B, Verhulst N, Dendooven L, Luna-Guido M (2016) 16S metagenomics reveals changes in the soil bacterial community driven by soil organic C, N-fertilizer and tillage-crop residue management. Soil Till Res 159:1–8CrossRefGoogle Scholar
  18. Chen Z, Wang C, Gschwendtner S, Willibald G, Unteregelsbacher S, Lu H, Kolar A, Schloter M, Butterbach-Bahl K, Dannenmann M (2015) Relationships between denitrification gene expression, dissimilatory nitrate reduction to ammonium and nitrous oxide and dinitrogen production in montane grassland soils. Soil Biol Biochem 87:67–77CrossRefGoogle Scholar
  19. Collavino MM, Tripp HJ, Frank IE, Vidoz ML, Calderoli PA, Donato M, Zehr JP, Aguilar OM (2014) nifH pyrosequencing reveals the potential for location-specific soil chemistry to influence N2-fixing community dynamics. Environ Microbiol 16:3211–3223CrossRefGoogle Scholar
  20. Condron L, Stark C, O'Callaghan M, Clinton P, Huang Z (2010) The role of microbial communities in the formation and decomposition of soil organic matter, soil microbiology and sustainable crop production. Springer, Netherlands, pp 81–118Google Scholar
  21. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter J Complex Syst 1695Google Scholar
  22. Cui Y, Fang L, Guo X, Wang X, Zhang Y, Li P, Zhang X (2018) Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biol Biochem 116:11–21CrossRefGoogle Scholar
  23. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152CrossRefGoogle Scholar
  24. Fuentes B, Mora MDLL, Bol R, San Martin F, Pérez E, Cartes P (2014) Sorption of inositol hexaphosphate on desert soils. Geoderma 232:573–580CrossRefGoogle Scholar
  25. Fuka MM, Engel M, Gattinger A, Bausenwein U, Sommer M, Munch JC, Schloter M (2008a) Factors influencing variability of proteolytic genes and activities in arable soils. Soil Biol Biochem 40:1646–1653CrossRefGoogle Scholar
  26. Fuka MM, Engel M, Haesler F, Welzl G, Munch JC, Schloter M (2008b) Diversity of proteolytic community encoding for subtilisin in an arable field: spatial and temporal variability. Biol Fertil Soils 45:185–191CrossRefGoogle Scholar
  27. Geisseler D, Doane TA, Horwath WR (2009) Determining potential glutamine synthetase and glutamate dehydrogenase activity in soil. Soil Biol Biochem 41:1741–1749CrossRefGoogle Scholar
  28. Giaveno C, Celi L, Richardson AE, Simpson RJ, Barberis E (2010) Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates. Soil Biol Biochem 42:491–498CrossRefGoogle Scholar
  29. González M, Dalsgaard A, Olesen JB (2010) Centrality measures and the importance of generalist species in pollination networks. Ecol Complex 7:36–43CrossRefGoogle Scholar
  30. Greiner R, Konietzny U, Blackburn DM, Jorquera MA (2013) Production of partially phosphorylated myo-inositol phosphates using phytases immobilised on magnetic nanoparticles. Bioresour Technol 142:375–383CrossRefGoogle Scholar
  31. Hai B, Diallo NH, Sall S, Haesler F, Schauss K, Bonzi M, Assigbetse K, Chotte JL, Munch JC, Schloter M (2009) Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl Environ Microbiol 75:4993–5000CrossRefGoogle Scholar
  32. Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189CrossRefGoogle Scholar
  33. Hijbeek R, Berge HFMT, Whitmore AP, Barkusky D, Schröder JJ, Ittersum MKV (2017) Nitrogen fertiliser replacement values for organic amendments appear to increase with N application rates. Nutr Cycl Agroecosys 4:1–11Google Scholar
  34. Hooker TD, Stark JM (2008) Soil C and N cycling in three semiarid vegetation types: response to an in situ pulse of plant detritus. Soil Biol Biochem 40:2678–2685CrossRefGoogle Scholar
  35. Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322CrossRefGoogle Scholar
  36. Jarvis BDW (1983) Genetic diversity of rhizobium strains which nodulate Leucaena leucocephala. Curr Microbiol 8:153–158CrossRefGoogle Scholar
  37. Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L (2006) Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl Environ Microbiol 72:5957–5962CrossRefGoogle Scholar
  38. Lagos LM, Acuña JJ, Maruyama F, Ogram A, de la Luz MM, Jorquera MA (2016) Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites. Biol Fertil Soils 52:1007–1019CrossRefGoogle Scholar
  39. Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676CrossRefGoogle Scholar
  40. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, Juncker AS, Manichanh C, Chen B, Zhang W, Levenez F, Wang J, Xu X, Xiao L, Liang S, Zhang D, Zhang Z, Chen W, Zhao H, Al-Aama JY, Edris S, Yang H, Wang J, Hansen T, Nielsen HB, Brunak S, Kristiansen K, Guarner F, Pedersen O, Doré J, Ehrlich SD, Bork P, Wang J (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841CrossRefGoogle Scholar
  41. Li W, Godzik A (2006) CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659CrossRefGoogle Scholar
  42. Long XE, Yao H, Huang Y, Wei W, Zhu YG (2018) Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil. Soil Biol Biochem 118:103–114CrossRefGoogle Scholar
  43. Luo G, Ling N, Nannipieri P, Chen H, Raza W, Wang M, Guo S, Shen Q (2017) Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biol Fertil Soils 53:375–388CrossRefGoogle Scholar
  44. Lupatini M, Suleiman AK, Jacques RJ, Antoniolli ZI, Kuramae EE, de Oliveira Camargo FA, Würdig Roesch LF (2013) Soil-borne bacterial structure and diversity does not reflect community activity in pampa biome. PLoS One 8:e76465CrossRefGoogle Scholar
  45. Ma B, Zhao K, Lv X, Su W, Dai Z, Gilbert JA, Brookes PC, Faust K, Xu J (2018) Genetic correlation network prediction of forest soil microbial functional organization. ISME J 12:2492–2505CrossRefGoogle Scholar
  46. Mende DR, Waller AS, Sunagawa S, Jarvelin AI, Chan MM, Arumugam M, Raes J, Bork P (2012) Assessment of metagenomic assembly using simulated next generation sequencing data. PLoS One 7:e31386CrossRefGoogle Scholar
  47. Meyer N, Welp G, Rodionov A, Borchard N, Martius C, Amelung W (2018) Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil. Soil Biol Biochem 119:152–161CrossRefGoogle Scholar
  48. Mrkonjic Fuka M, Engel M, Gattinger A, Bausenwein U, Sommer M (2008) Factors influencing variability of proteolytic genes and activities in arable soils. Soil Biol Biochem 40:1646–1653CrossRefGoogle Scholar
  49. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  50. Nannipieri P, Trasar-Cepeda C, Dick RP (2018) Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol Fertil Soils 54:11–19CrossRefGoogle Scholar
  51. Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, 2nd edn. America Society of Agronomy, Madison, WI, pp 535–579Google Scholar
  52. Nelson MB, Martiny AC, Martiny JBH (2016) Global biogeography of microbial nitrogen-cycling traits in soil. PNAS 113:8033–8040CrossRefGoogle Scholar
  53. Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, Plichta DR, Gautier L, Pedersen AG, Chatelier EL, Pelletier E, Bonde I, Nielsen T, Manichanh C, Arumugam M, Batto JM, Quintanilha dos Santos MB, Blom N, Borruel N, Burgdorf KS, Boumezbeur F, Casellas F, Doré J, Dworzynski P, Guarner F, Hansen T, Hildebrand F, Kaas RS, Kennedy S, Kristiansen K, Kultima JR, Léonard P, Levenez F, Lund O, Moumen B, Paslier DL, Pons N, Pedersen O, Prifti E, Qin J, Raes J, Sørensen S, Tap J, Tims S, Ussery DW, Yamada T, Consortium M, Renault P, Sicheritz-Ponten T, Bork P, Wang J, Brunak S, Ehrlich SD (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 32:822–828CrossRefGoogle Scholar
  54. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: community ecology package. R package version 1:17–17Google Scholar
  55. Popov KM, Kedishvili NY, Harris RA (1992) Coenzyme a- and nadh-dependent esterase activity of methylmalonate semialdehyde dehydrogenase. Biochim Biophys Acta 1119:69–73CrossRefGoogle Scholar
  56. Qi R, Li J, Lin Z, Li Z, Li Y, Yang X, Zhang J, Zhao B (2016) Temperature effects on soil organic carbon soil labile organic carbon fractions and soil enzyme activities under long-term fertilization regimes. Appl Soil Ecol 102:36–45CrossRefGoogle Scholar
  57. Qian X, Gu J, Pan HJ, Zhang KY, Sun W, Wang XJ, Gao H (2015) Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. Eur J Soil Biol 70:23–30CrossRefGoogle Scholar
  58. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Paslier DL, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Consortium M, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65CrossRefGoogle Scholar
  59. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60CrossRefGoogle Scholar
  60. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Chatelier EL, Yao J, Wu L, Zhou J, Ni S, Liu L, Pons N, Batto JM, Kennedy SP, Leonard P, Yuan C, Ding W, Chen Y, Hu X, Zheng B, Qian G, Xu W, Dusko Ehrlich S, Zheng S, Li L (2014) Alterations of the human gut microbiome in liver cirrhosis. Nature 513:59–64CrossRefGoogle Scholar
  61. Rahman MM, Shan J, Yang P, Shang X, Xia Y, Yan X (2018) Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes (ARGs), anammox and denitrification rates in paddy soils. Environ Pollut 240:368–377CrossRefGoogle Scholar
  62. Rütting T, Boeckx P, Müller C, Klemedtsson L (2011) Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8:1779–1791CrossRefGoogle Scholar
  63. Schmidt O, Horn MA, Kolb S, Drake HL (2015) Temperature impacts differentially on the methanogenic food web of cellulose-supplemented peatland soil. Environ Microbiol 17:720–734CrossRefGoogle Scholar
  64. Schöler A, Jacquiod S, Vestergaard G, Schulz S, Schloter M (2017) Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol Fertil Soils 53:485–489CrossRefGoogle Scholar
  65. Shapiro BM, Stadtman ER (1970) Glutamine synthetase (Escherichia coli). Method Enzymol 17:910–922CrossRefGoogle Scholar
  66. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefGoogle Scholar
  67. Singh H, Singh KP (1995) Effect of plant residue and fertilizer on grain yield of dryland rice under reduced tillage cultivation. Soil Till Res 34:115–125CrossRefGoogle Scholar
  68. Sinsabaugh RL, Shah JJF, Hill BH, Elonen CM (2012) Ecoenzymatic stoichiometry of stream sediments with comparison to terrestrial soils. Biogeochemistry 111:455–467CrossRefGoogle Scholar
  69. Sintes E, Bergauer K, De Corte D, Yokokawa T, Herndl GJ (2013) Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environ Microbiol 15:1647–1658CrossRefGoogle Scholar
  70. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende DR, Alberti A, Cornejo-Castillo FM, Costea PI, Cruaud C, d’ Ovidio F, Engelen S, Ferrera I, Gasol JM, Guidi L, Hildebrand F, Kokoszka F, Lepoivre C, Lima-Mendez G, Poulain J, Poulos BT, Royo-Llonch M, Sarmento H, Vieira-Silva S, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Bowler C, de Vargas C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Jaillon O, Not F, Ogata H, Pesant S, Speich S, Stemmann L, Sullivan MB, Weissenbach J, Wincker P, Karsenti E, Raes J, Acinas SG, Bork P (2015) Ocean plankton. Structure and function of the global ocean microbiome. Science 34:1261359Google Scholar
  71. Tan H, Barret M, Mooij MJ, Rice O, Morrissey JP, Dobson A, Griffiths B, O’ Gara F (2013) Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol Fertil Soils 49:661–672Google Scholar
  72. Trivedi P, Rochester IJ, Trivedi C, Van Nostrand JD, Zhou J, Karunaratne S, Anderson IC, Singh BK (2015) Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities. Soil Biol Biochem 91:169–181CrossRefGoogle Scholar
  73. Tu Q, He Z, Wu L, Xue K, Xie G, Chain P, Reich PB, Hobbie SE, Zhou J (2017) Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem. Soil Biol Biochem 106:99–108CrossRefGoogle Scholar
  74. Verzeaux J, Alahmad A, Habbib H, Nivelle E, Roger D, Lacoux J, Decocq G, Hirel B, Catterou M, Spicher F, Dubois F, Duclercq J, Tetu T (2016) Cover crops prevent the deleterious effect of nitrogen fertilisation on bacterial diversity by maintaining the carbon content of ploughed soil. Geoderma 281:49–57CrossRefGoogle Scholar
  75. Vestergaard G, Schulz S, Schöler A, Schloter M (2017) Making big data smart—how to use metagenomics to understand soil quality. Biol Fertil Soils 53:479–484CrossRefGoogle Scholar
  76. Vick-Majors TJ, Priscu JC, Amaral-Zettler LA (2014) Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered Antarctic lakes. ISME J 8:778–789CrossRefGoogle Scholar
  77. Wang Y, Zhu G, Song L, Wang S, Yin C (2013) Manure fertilization alters the population of ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea in a paddy soil. J Basic Microb 54:190–197CrossRefGoogle Scholar
  78. Watanabe K, Asakawa S, Hayano K (1994) Evaluation of extracellular protease activities of soil bacteria. Soil Biol Biochem 26:479–482CrossRefGoogle Scholar
  79. Wei W, Isobe K, Nishizawa T, Zhu L, Shiratori Y, Ohte N, Koba K, Otsuka S, Senoo S (2015) Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. ISME J 9(9):1954–1965CrossRefGoogle Scholar
  80. Williams MA, Jangid K, Shanmugam SG, Whitman WB (2013) Bacterial communities in soil mimic patterns of vegetative succession and ecosystem climax but are resilient to change between seasons. Soil Biol Biochem 57:749–757CrossRefGoogle Scholar
  81. Wongwilaiwalin S, Laothanachareon T, Mhuantong W, Tangphatsornruang S, Eurwilaichitr L, Igarashi Y, Champreda V (2013) Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia. Appl Microbiol Biotechnol 97:8941–8954CrossRefGoogle Scholar
  82. Wutzler T, Zaehle S, Schrumpf M, Ahrens B, Reichstein M (2017) Adaptation of microbial resource allocation affects modelled long term soil organic matter and nutrient cycling. Soil Biol Biochem 115:322–336CrossRefGoogle Scholar
  83. Yamoah CF, Bationo A, Shapiro B, Koala S (2002) Trend and stability analyses of millet yields treated with fertilizer and crop residues in the Sahel. Field Crop Res 75:53–62CrossRefGoogle Scholar
  84. Zaehle S, Dalmonech D (2011) Carbon-nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks. Curr Opin Env Sust 3:311–320CrossRefGoogle Scholar
  85. Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Penuelas J, Richter A, Sardans J, Wanek W (2015) The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol Monogr 85:133–155CrossRefGoogle Scholar
  86. Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, Amiot A, Böhm J, Brunetti F, Habermann N, Hercog R, Koch M, Luciani A, Mende DR, Schneider MA, Schrotz-King P, Tournigand C, Van Nhieu JT, Yamada T, Zimmermann J, Benes V, Kloor M, Ulrich CM, von Knebel DM, Sobhani I, Bork P (2014) Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol 10:766CrossRefGoogle Scholar
  87. Zhang X, Zhang R, Gao J, Wang X, Fan F, Ma X, Yin H, Zhang C, Feng K, Deng Y (2017) Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biol Biochem 104:208–217CrossRefGoogle Scholar
  88. Zheng W, Gong Q, Zhao Z, Liu J, Zhai B, Wang Z, Li Z (2018a) Changes in the soil bacterial community structure and enzyme activities after intercrop mulch with cover crop for eight years in an orchard. Eur J Soil Biol 86:34–41CrossRefGoogle Scholar
  89. Zheng W, Zhao Z, Gong Q, Zhai BN, Li ZY (2018b) Effects of cover crop in an apple orchard on microbial community composition, networks, and potential genes involved with degradation of crop residues in soil. Biol Fertil Soils 54:743–759CrossRefGoogle Scholar
  90. Zhu N, Yang J, Ji L, Liu J, Yang Y, Yuan H (2016) Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose. Biotechnol Biofuels 9:243CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wei Zheng
    • 1
    • 2
    • 3
  • Zhiyuan Zhao
    • 1
    • 2
    • 3
  • Fenglian Lv
    • 1
    • 2
  • Rui Wang
    • 1
  • Qingli Gong
    • 1
    • 2
    • 3
  • Bingnian Zhai
    • 1
    • 2
    • 3
    Email author
  • Zhaohui Wang
    • 1
    • 2
  • Zhengyang Zhao
    • 3
  • Ziyan Li
    • 1
    • 2
    • 3
  1. 1.College of Resources and EnvironmentNorthwest A&F UniversityYanglingChina
  2. 2.Key Laboratory of Plant Nutrition and the Agri-environment in Northwest ChinaMinistry of AgricultureYanglingChina
  3. 3.Apple Experimental StationNorthwest A&F UniversityWeinanChina

Personalised recommendations