Biology and Fertility of Soils

, Volume 55, Issue 2, pp 171–183 | Cite as

Spatial variation of earthworm communities and soil organic carbon in temperate agroforestry

  • Rémi CardinaelEmail author
  • Kevin Hoeffner
  • Claire Chenu
  • Tiphaine Chevallier
  • Camille Béral
  • Antoine Dewisme
  • Daniel Cluzeau
Original Paper


The aim of this study was to assess how soil organic C (SOC) stocks and earthworm communities were modified in agroforestry systems compared to treeless control plots and within the agroforestry plots (tree rows vs alleys). We used a network of 13 silvoarable agroforestry sites in France along a north/south gradient. Total earthworm abundance and biomass were significantly higher in the tree rows than those in the control plots, but were not modified in the alleys compared to those in the control plots. Earthworm species richness, Shannon index, and species evenness were significantly higher in the tree rows than those in the alleys. Total abundance of epigeic, epi-anecic, strict anecic, and endogeic was higher in the tree rows. Surprisingly, earthworm individual weight was significantly lower in the tree rows than that in the alleys and in the control plots. SOC stocks were significantly higher in the tree rows compared to that in the control plots across all sites. Despite higher SOC stocks in the tree rows, the amount of available C per earthworm individual was lower compared to those in the control. The absence of disturbance (no tillage, no fertilizers, no pesticides) in the tree rows rather than increased SOC stocks therefore seems to be the main factor explaining the increased total abundance, biomass, and diversity of earthworms. The observed differences in earthworm communities between tree rows and alleys may lead to modified and spatially structured SOC dynamics within agroforestry plots.


Silvoarable system Alley cropping Earthworm abundance Earthworm diversity Lumbricidae 



We thank Hoël Hotte and Morgane Ollivier for their technical assistance during the earthworm field sampling.

Funding information

This study was financed by the French Environment and Energy Management Agency (ADEME), following a call for proposals as part of the REACCTIF program (Research on Climate Change Mitigation in Agriculture and Forestry). This study was part of the funded project AGRIPSOL (Agroforestry for Soil Protection), coordinated by AGROOF. Rémi Cardinael’s PhD thesis was co-funded by La Fondation de France and ADEME. Kevin Hoeffner’s PhD thesis was funded by a grant of the French Ministry of Research.

Supplementary material

374_2018_1332_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1692 kb)


  1. Araujo Y, López-Hernández D (1999) Earthworm populations in a savanna-agroforestry system of Venezuelan Amazonia. Biol Fertil Soils 29:413–418CrossRefGoogle Scholar
  2. Bambrick AD, Whalen JK, Bradley RL, Cogliastro A, Gordon AM, Olivier A, Thevathasan NV (2010) Spatial heterogeneity of soil organic carbon in tree-based intercropping systems in Quebec and Ontario, Canada. Agrofor Syst 79:343–353CrossRefGoogle Scholar
  3. Bates DM (2010) lme4: mixed-effects modeling with R. Springer, 145p. URL
  4. Bertrand M, Barot S, Blouin M, Whalen J, de Oliveira T, Roger-Estrade J (2015) Earthworm services for cropping systems. A review. Agron Sustain Dev 35:553–567CrossRefGoogle Scholar
  5. Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, Dai J, Denddoven L, Pérès G, Tondoh JE, Cluzeau D, Brun JJ (2013) A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci 64:161–182CrossRefGoogle Scholar
  6. Bouché MB (1972) Lombriciens de France: écologie et systématique. Institut National de la Recherche Agronomique, ParisGoogle Scholar
  7. Bouché MB (1977) Stratégies lombriciennes. Ecol Bull 25:122–132Google Scholar
  8. Bouché MB, Kretzschmar A (1974) Fonctions des lombriciens II. Recherches méthodologiques pour l’analyse qualitative de la matière organique végétale ingérée (étude du peuplement de la station R.C.P.-165/P.B.I). Rev Ecol Biol Sol 11:127–139Google Scholar
  9. Briones MJI, Schmidt O (2017) Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Glob Chang Biol 23:4396–4419CrossRefGoogle Scholar
  10. Butt KR, Frederickson J, Morris RM (1994) Effect of earthworm density on the growth and reproduction of Lumbricus terrestris L. (Oligochaeta: Lumbricidae) in culture. Pedobiologia 38:254–261Google Scholar
  11. Butt KR, Briones MJI, Lowe CN (2009) Is tagging with visual implant elastomer a reliable technique for marking earthworms? Pesq Agropec Bras 44:969–974CrossRefGoogle Scholar
  12. Capowiez Y, Cadoux S, Bouchant P, Ruy S, Roger-Estrade J, Richard G, Boizard H (2009) The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration. Soil Tillage Res 105:209–216CrossRefGoogle Scholar
  13. Cardinael R, Chevallier T, Barthès BG, Saby NPA, Parent T, Dupraz C, Bernoux M, Chenu C (2015a) Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon—a case study in a Mediterranean context. Geoderma 259–260:288–299CrossRefGoogle Scholar
  14. Cardinael R, Mao Z, Prieto I, Stokes A, Dupraz C, Kim JH, Jourdan C (2015b) Competition with winter crops induces deeper rooting of walnut trees in a Mediterranean alley cropping agroforestry system. Plant Soil 391:219–235CrossRefGoogle Scholar
  15. Cardinael R, Chevallier T, Cambou A, Béral C, Barthès BG, Dupraz C, Durand C, Kouakoua E, Chenu C (2017) Increased soil organic carbon stocks under agroforestry: a survey of six different sites in France. Agric Ecosyst Environ 236:243–255CrossRefGoogle Scholar
  16. Cardinael R, Umulisa V, Toudert A, Olivier A, Bockel L, Bernoux M (2018a) Revisiting IPCC Tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems. Environ Res Lett. in press
  17. Cardinael R, Guenet B, Chevallier T, Dupraz C, Cozzi T, Chenu C (2018b) High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system—combining experimental and modeling approaches. Biogeosciences 15:297–317CrossRefGoogle Scholar
  18. Chan KY (2001) An overview of some tillage impacts on earthworm population abundance and diversity—implications for functioning in soils. Soil Tillage Res 57:179–191CrossRefGoogle Scholar
  19. Chatterjee N, Nair PKR, Chakraborty S, Nair VD (2018) Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: a meta-analysis. Agric Ecosyst Environ 266:55–67CrossRefGoogle Scholar
  20. Cluzeau D (1992) Structure et dynamique des peuplements lombriciens dans des systèmes tempérés anthropisés. Université Rennes 1, RennesGoogle Scholar
  21. Cluzeau D, Guernion M, Chaussod R, Martin-Laurent F, Villenave C, Cortet J, Ruiz-Camacho N, Pernin C, Mateille T, Philippot L, Bellido A, Rougé L, Arrouays D, Bispo A, Pérès G (2012) Integration of biodiversity in soil quality monitoring: baselines for microbial and soil fauna parameters for different land-use types. Eur J Soil Biol 49:63–72CrossRefGoogle Scholar
  22. Crittenden SJ, Huerta E, de Goede RGM, Pulleman MM (2015) Earthworm assemblages as affected by field margin strips and tillage intensity: an on-farm approach. Eur J Soil Biol 66:49–56CrossRefGoogle Scholar
  23. Curry J (1998) Factors affecting earthworm abundance in soils. In: Edwards CA (ed) Earthworm ecology. St. Lucie Press, Raton, pp 37–64Google Scholar
  24. de Stefano A, Jacobson MG (2018) Soil carbon sequestration in agroforestry systems: a meta-analysis. Agrofor Syst 92:285–299Google Scholar
  25. Decaëns T, Bureau F, Margerie P (2003) Earthworm communities in a wet agricultural landscape of the Seine Valley (Upper Normandy, France): the 7th International Symposium on Earthworm Ecology Cardiff Wales 2002. Pedobiologia 47:479–489Google Scholar
  26. Decaëns T, Margerie P, Aubert M, Hedde M, Bureau F (2008) Assembly rules within earthworm communities in North-Western France—a regional analysis. Appl Soil Ecol 39:321–335CrossRefGoogle Scholar
  27. Dupont L, Gresille Y, Richard B, Decaëns T, Mathieu J (2015) Dispersal constraints and fine-scale spatial genetic structure in two earthworm species. Biol J Linn Soc 114:335–347CrossRefGoogle Scholar
  28. Dupont L, Torres-Leguizamon M, René-Corail P, Mathieu J (2017) Landscape features impact connectivity between soil populations: a comparative study of gene flow in earthworms. Mol Ecol 26:3128–3140CrossRefGoogle Scholar
  29. Eijsackers H (2011) Earthworms as colonizers of natural and cultivated soil environments. Appl Soil Ecol 50:1–13CrossRefGoogle Scholar
  30. Ellert BH, Bettany JR (1995) Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci 75:529–538CrossRefGoogle Scholar
  31. Feliciano D, Ledo A, Hillier J, Nayak DR (2018) Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agric Ecosyst Environ 254:117–129CrossRefGoogle Scholar
  32. Ferrière G (1980) Fonctions des Lombriciens. VII. Une méthode d’analyse de la matière organique végétale ingérée. Pedobiologia 20:263–273Google Scholar
  33. Fonte SJ, Barrios E, Six J (2010) Earthworms, soil fertility and aggregate-associated soil organic matter dynamics in the Quesungual agroforestry system. Geoderma 155:320–328CrossRefGoogle Scholar
  34. Frazão J, de Goede RGM, Brussaard L, Faber JH, Groot JCJ, Pulleman MM (2017) Earthworm communities in arable fields and restored field margins, as related to management practices and surrounding landscape diversity. Agric Ecosyst Environ 248:1–8CrossRefGoogle Scholar
  35. Frouz J, Pižl V, Cienciala E, Kalčík J (2009) Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry 94:111–121CrossRefGoogle Scholar
  36. Germon A, Cardinael R, Prieto I, Mao Z, Kim JH, Stokes A, Dupraz C, Laclau JP, Jourdan C (2016) Unexpected phenology and lifespan of shallow and deep fine roots of walnut trees grown in a silvoarable Mediterranean agroforestry system. Plant Soil 401:409–426CrossRefGoogle Scholar
  37. Hartenstein R, Amico L (1983) Production and carrying for the earthworm Lumbricus terrestris in culture. Soil Biol Biochem 15:51–54CrossRefGoogle Scholar
  38. Hauser S (1993) Distribution and activity of earthworms and contribution to nutrient recycling in alley cropping. Biol Fertil Soils 15:16–20CrossRefGoogle Scholar
  39. Hauser S, Osawalam DO, Vanlauwe B (1998) Spatial and temporal gradients of earthworms casting activity in alley cropping systems. Agrofor Syst 41:127–137CrossRefGoogle Scholar
  40. Hmar L, Ramanujam SN (2014) Earthworm cast production and physico-chemical properties in two agroforestry systems of Mizoram (India). Trop Ecol 55:75–84Google Scholar
  41. Hoeffner K, Monard C, Santonja M, Cluzeau D (2018) Feeding behaviour of epi-anecic earthworm species and their impacts on soil microbial communities. Soil Biol Biochem 125:1–9CrossRefGoogle Scholar
  42. Hof AR, Bright PW (2010) The impact of grassy field margins on macro-invertebrate abundance in adjacent arable fields. Agric Ecosyst Environ 139:280–283CrossRefGoogle Scholar
  43. Hoogerkamp M, Rogaar H, Eijsackers HJP (1983) Effect of earthworms on grassland on recently reclaimed polder soils in the Netherlands. In: Satchell JE (ed) Earthworm ecology. Springer, Dordrecht, pp 85–105CrossRefGoogle Scholar
  44. Jégou D, Cluzeau D, Balesdent J, Tréhen P (1998) Effects of four ecological categories of earthworms on carbon transfer in soil. Appl Soil Ecol 9:249–255CrossRefGoogle Scholar
  45. Jégou D, Capowiez Y, Cluzeau D (2001a) Interactions between earthworm species in artificial soil cores assessed through the 3D reconstruction of the burrow systems. Geoderma 102:123–137CrossRefGoogle Scholar
  46. Jégou D, Schrader S, Diestel H, Cluzeau D (2001b) Morphological, physical and biochemical characteristics of burrow walls formed by earthworms. Appl Soil Ecol 17:165–174CrossRefGoogle Scholar
  47. Jouquet P, Dauber J, Lagerlöf J, Lavelle P, Lepage M (2006) Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl Soil Ecol 32:153–164CrossRefGoogle Scholar
  48. Kretzschmar A (1977) Etude du transit intestinal des Lombriciens aneciques. II. Resultats et interpretation ecologique. Ecol Bull 25:210–221Google Scholar
  49. Lagerlöf J, Goffre B, Vincent C (2002) The importance of field boundaries for earthworms (Lumbricidae) in the Swedish agricultural landscape. Agric Ecosyst Environ 89:91–103CrossRefGoogle Scholar
  50. Lavelle P (1983) The structure of earthworm communities. In: Satchell J (ed) Earthworm ecology. Chapman & Hall, London, p 449–466Google Scholar
  51. Lavelle P (1988) Earthworm activities and the soil system. Biol Fertil Soils 6:237–251CrossRefGoogle Scholar
  52. Lavelle P (1997) Faunal activities and soil processes: adaptative strategy that determine ecosystem function. Adv Ecol Res 27:93–132Google Scholar
  53. Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:3–15CrossRefGoogle Scholar
  54. Lee KE (1985) Earthworms their ecology and relationships with soils and land use. Academic Press, SydneyGoogle Scholar
  55. Ligthart TN, Peek GJCW (1997) Evolution of earthworm burrow systems after inoculation of lumbricid earthworms in a pasture in the Netherlands. Soil Biol Biochem 29:453–462CrossRefGoogle Scholar
  56. Makowski D, Piraux F, Brun F (2018) De l’analyse des réseaux expérimentaux à la méta-analyse. Méthodes et applications avec le logiciel R pour les sciences agronomiques et environnementales. EditionsQuae, p 162Google Scholar
  57. Mathieu J, Barot S, Blouin M, Caro G, Decaëns T, Dubs F, Dupont L, Jouquet P, Nai P (2010) Habitat quality, conspecific density, and habitat pre-use affect the dispersal behaviour of two earthworm species, Aporrectodea icterica and Dendrobaena veneta, in a mesocosm experiment. Soil Biol Biochem 42:203–209CrossRefGoogle Scholar
  58. Mathieu J, Caro G, Dupont L (2018) Methods for studying earthworm dispersal. Appl Soil Ecol 123:339–344CrossRefGoogle Scholar
  59. Nair PKR (1993) An introduction to agroforestry. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  60. Neuhauser E, Hartenstein R, Kaplan D (1980) Growth of the earthworm Eisenia foetida in relation to population density and food rationing. Oikos 35:93–98CrossRefGoogle Scholar
  61. Nieminen M, Ketoja E, Mikola J, Terhivuo J, Siren T, Nuutinen V (2011) Local land use effects and regional environmental limits on earthworm communities in Finnish arable landscapes. Ecol Appl 21:3162–3177CrossRefGoogle Scholar
  62. Nuutinen V, Butt KR, Jauhiainen L (2011) Field margins and management affect settlement and spread of an introduced dew-worm (Lumbricus terrestris L.) population. Pedobiologia 54S:S167–S172CrossRefGoogle Scholar
  63. Pelosi C, Bertrand M, Roger-Estrade J (2009) Earthworm community in conventional, organic and direct seeding with living mulch cropping systems. Agron Sustain Dev 29:287–295CrossRefGoogle Scholar
  64. Pelosi C, Pey B, Hedde M, Caro G, Capowiez Y, Guernion M, Peigné J, Diron D, Bertrand M, Cluzeau D (2014) Reducing tillage in cultivated fields increases earthworm functional diversity. Appl Soil Ecol 83:79–87CrossRefGoogle Scholar
  65. Pérès G, Cluzeau D, Curmi P, Hallaire V (1998) Earthworm activity and soil structure changes due to organic enrichments in vineyard systems. Biol Fertil Soils 27:417–424CrossRefGoogle Scholar
  66. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1–111Google Scholar
  67. Ponge JF, Pérès G, Guernion M, Ruiz-Camacho N, Cortet J, Pernin C, Villenave C, Chaussod R, Martin-Laurent F, Bispo A, Cluzeau D (2013) The impact of agricultural practices on soil biota: a regional study. Soil Biol Biochem 67:271–284CrossRefGoogle Scholar
  68. Potvin LR, Lilleskov EA (2017) Introduced earthworm species exhibited unique patterns of seasonal activity and vertical distribution, and Lumbricus terrestris burrows remained usable for at least 7 years in hardwood and pine stands. Biol Fertil Soils 53:187–198CrossRefGoogle Scholar
  69. Price GW, Gordon AM (1999) Spatial and temporal distribution of earthworms in a temperate intercropping system in southern Ontario, Canada. Agrofor Syst 44:141–149CrossRefGoogle Scholar
  70. R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  71. Roarty S, Schmidt O (2013) Permanent and new arable field margins support large earthworm communities but do not increase in-field populations. Agric Ecosyst Environ 170:45–55CrossRefGoogle Scholar
  72. Saharan N, Singh RP (1988) Influence of earthworm activity on soil fertility in agroforestry systems. Ann Arid Zone 27:81–85Google Scholar
  73. Schon NL, Mackay AD, Gray RA, Dodd MB (2014) The action of an anecic earthworm (Aporrectodea longa) on vertical soil carbon distribution in New Zealand pastures several decades after their introduction. Eur J Soil Biol 62:101–104CrossRefGoogle Scholar
  74. Shi L, Feng W, Xu J, Kuzyakov Y (2018) Agroforestry systems: meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad Dev:1–12Google Scholar
  75. Shipitalo MJ, Protz R, Tomlin AD (1988) Effect of diet on the feeding and casting activity of Lumbricus terrestris and Lumbricus rubellus in laboratory culture. Soil Biol Biochem 20:233–237CrossRefGoogle Scholar
  76. Smith J, Potts SG, Woodcock BA, Eggleton P (2008a) Can arable field margins be managed to enhance their biodiversity, conservation and functional value for soil macrofauna? J Appl Ecol 45:269–278CrossRefGoogle Scholar
  77. Smith RG, McSwiney CP, Grandy AS, Suwanwaree P, Snider RM, Robertson GP (2008b) Diversity and abundance of earthworms across an agricultural land-use intensity gradient. Soil Tillage Res 100:83–88CrossRefGoogle Scholar
  78. Tian G, Olimah JA, Adeoye GO, Kang BT (2000) Regeneration of earthworm populations in a degraded soil by natural and planted fallows under humid tropical conditions. Soil Sci Soc Am J 64:222CrossRefGoogle Scholar
  79. Udawatta RP, Kremer RJ, Adamson BW, Anderson SH (2008) Variations in soil aggregate stability and enzyme activities in a temperate agroforestry practice. Appl Soil Ecol 39:153–160CrossRefGoogle Scholar
  80. van Capelle C, Schrader S, Brunotte J (2012) Tillage-induced changes in the functional diversity of soil biota—a review with a focus on German data. Eur J Soil Biol 50:165–181CrossRefGoogle Scholar
  81. Wotherspoon A, Thevathasan NV, Gordon AM, Voroney RP (2014) Carbon sequestration potential of five tree species in a 25-year-old temperate tree-based intercropping system in southern Ontario, Canada. Agrofor Syst 88:631–643CrossRefGoogle Scholar
  82. Zeithaml J, Pizl V, Sklenicka P (2009) Earthworm assemblages in an ecotone between forest and arable field and their relations with soil properties. Pesq Agrop Brasileira 44:922–927CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Eco&Sols, IRD, CIRAD, INRA, Montpellier SupAgroUniversity of MontpellierMontpellierFrance
  2. 2.UMR Ecosys, INRA, AgroParisTechUniversité Paris SaclayThiverval-GrignonFrance
  3. 3.CIRAD, UPR AIDAMontpellierFrance
  4. 4.AIDA, CIRADUniversity of MontpellierMontpellierFrance
  5. 5.CNRS, ECOBIO UMR 6553University of RennesRennesFrance
  6. 6.AGROOFAnduzeFrance

Personalised recommendations