Biology and Fertility of Soils

, Volume 53, Issue 7, pp 811–821 | Cite as

Comparison of lime- and biochar-mediated pH changes in nitrification and ammonia oxidizers in degraded acid soil

  • Nikola TeutscherovaEmail author
  • Eduardo VazquezEmail author
  • Alberto Masaguer
  • Mariela Navas
  • Kate M Scow
  • Radomir Schmidt
  • Marta Benito
Original Paper


Ca-amendments are recommended for soil fertility enhancement in acid soils. Biochar (Bc) can be used as an alternative for the same purpose. Biochar additions have been reported to alter microbial communities in soils and biogeochemical processes including nitrogen (N) cycling. In a microcosm experiment, we investigated the interactive effects of soil pH, the type of soil amendment (lime or biochar), and the NH4 + supply on net N mineralization and nitrification in degraded acid soil and on the abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Soil was incubated under native pH and CaCO3 or biochar-manipulated pH to reach pH 6.2 and 6.8 in the presence or absence of added ammonium for 70 days. Our results showed that Bc had a longer-lasting effect on soil pH than CaCO3, suggesting that Bc could be a preferable liming agent. Increased pH stimulated microbial activity and led to increased N mineralization, which was higher when CaCO3 was applied. Although pH increase and NH4 +-N addition had no immediate effect on nitrification, they synergically enhanced nitrification at the end of the experiment. The amoA gene of AOA consistently outnumbered that of AOB, whereas only AOB amoA gene abundance number was significantly correlated with nitrification and their abundance followed similar trend as NO3 -N during the incubation. In acid soils where AOB could play a significant role in nitrification, biochar could result in more pronounced changes in N cycle than lime application which could be of especially high interest in intensively managed soils with high N inputs.


Archaea Bacteria Liming Net nitrification qPCR 



Support for this work was provided by project AGRISOST-CM (S2013/ABI-2717) from the Comunidad de Madrid and cofunded by the ESIF. Dr. Benito acknowledges a grant (PR2015-00046) from the Ministry of Education, Culture and Sport (Spain). Eduardo Vázquez thanks the Ministerio de Economía y Competitividad (Spain) for his FPU fellowship.

Supplementary material

374_2017_1222_MOESM1_ESM.pdf (124 kb)
ESM 1 (PDF 124 kb)
374_2017_1222_MOESM2_ESM.pdf (131 kb)
ESM 2 (PDF 131 kb)


  1. Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling carbon, nitrogen and phosphorus. Pedobiologia 54:309–320CrossRefGoogle Scholar
  2. Bai SH, Reverchon F, Xu CY, Xu Z, Blumfield TJ, Zhao H, Van Zwieten L, Wallace HM (2015) Wood biochar increases nitrogen retention in field settings mainly through abiotic processes. Soil Biol Biochem 90:232–240. doi: 10.1016/j.soilbio.2015.08.007 CrossRefGoogle Scholar
  3. Bremner JM, Mulvaney CS (1982) Nitrogen—total. In: Page AL Miller, RH, DR Keeney (ed) Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (Agronomy series n 9) ASA. SSSA Madison, Wi, pp 595–624Google Scholar
  4. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi: 10.1016/0038-0717(85)90144-0 CrossRefGoogle Scholar
  5. Che J, Zhao XQ, Zhou X, Jia ZJ, Shen RF (2015) High pH-enhanced soil nitrification was associated with ammonia-oxidizing bacteria rather than archaea in acidic soils. Appl Soil Ecol 85:21–29. doi: 10.1016/j.apsoil.2014.09.003 CrossRefGoogle Scholar
  6. Chen X, Zhang LM, Shen JP, Wei WX, He JZ (2011) Abundance and community structure of ammonia-oxidizing archaea and bacteria in an acid paddy soil. Biol Fertil Soils 47:323–331. doi: 10.1007/s00374-011-0542-8 CrossRefGoogle Scholar
  7. Clough T, Condron L, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293. doi: 10.3390/agronomy3020275 CrossRefGoogle Scholar
  8. DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448. doi: 10.2136/sssaj2005.0096 CrossRefGoogle Scholar
  9. Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ (2010) Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol 72:386–394. doi: 10.1111/j.1574-6941.2010.00861.x CrossRefPubMedGoogle Scholar
  10. Espejo R (1987) The soils and ages of the “raña” surfaces related to the Villuercas and Altamira mountain ranges (western Spain). Catena 14:399–418. doi: 10.1016/0341-8162(87)90012-9 CrossRefGoogle Scholar
  11. Forster JC (1995) Soil nitrogen. In: Alef K NP (ed) Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London, pp 79-87Google Scholar
  12. Gómez-Paccard C, Mariscal-Sancho I, León P, Benito M, Gonzalez P, Ordonez R, Espejo R, Hontoria C (2013) Ca-amendment and tillage: medium term synergies for improving key soil properties of acid soils. Soil Tillage Res. doi: 10.1016/j.still.2013.08.009
  13. Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. Isme J 3:597–605. doi: 10.1038/Ismej.2008.128 CrossRefPubMedGoogle Scholar
  14. Hanan EJ, Schimel JP, Dowdy K, D’Antonio CM (2016) Effects of substrate supply, pH, and char on net nitrogen mineralization and nitrification along a wildfire-structured age gradient in chaparral. Soil Biol Biochem 95:87–99. doi: 10.1016/j.soilbio.2015.12.017 CrossRefGoogle Scholar
  15. Hatzenpichler R (2012) Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol 78:7501–7510. doi: 10.1128/AEM.01960-12 CrossRefPubMedPubMedCentralGoogle Scholar
  16. He L, Liu Y, Zhao J, Bi Y, Zhao X, Wang S, Xing G (2016) Comparison of straw-biochar-mediated changes in nitrification and ammonia oxidizers in agricultural oxisols and cambosols. Biol Fertil Soils 52:137–149. doi: 10.1007/s00374-015-1059-3 CrossRefGoogle Scholar
  17. Homyak PM, Sickman JO, Miller AE, Melack JM, Meixner T, Schimel JP (2014) Assessing nitrogen-saturation in a seasonally dry chaparral watershed: limitations of traditional indicators of N-saturation. Ecosystems 17:1286–1305. doi: 10.1007/s10021-014-9792-2 CrossRefGoogle Scholar
  18. Jenkinson DS, Fox RH, Rayner JH (1985) Interactions between fertilizer nitrogen and soil nitrogen—the so called “priming”effect. J Soil Sci 36:425–444CrossRefGoogle Scholar
  19. Joergensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value. Soil Biol Biochem 28:25–31. doi: 10.1016/0038-0717(95)00102-6 CrossRefGoogle Scholar
  20. Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, Van Zwieten L, Kimber S, Cowie A, Singh BP, Lehmann J, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Aust J Soil Res 48:501–515. doi: 10.1071/SR10009 CrossRefGoogle Scholar
  21. León P, Espejo R, Gómez-Paccard C, Hontoria C, Mariscal I, Renella G, Benito M (2017) No tillage and sugar beet foam amendment enhanced microbial activity of degraded acidic soils in South West Spain. Appl Soil Ecol 109:69–74. doi: 10.1016/j.apsoil.2016.09.012 CrossRefGoogle Scholar
  22. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71. doi: 10.1006/niox.2000.0319 CrossRefPubMedGoogle Scholar
  23. Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978. doi: 10.1111/j.1462-2920.2008.01701.x CrossRefPubMedGoogle Scholar
  24. Novak JM, Busscher WJ, Watts DW, Laird DA, Ahmedna MA, Niandou MAS (2010) Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma 154:281–288. doi: 10.1016/j.geoderma.2009.10.014 CrossRefGoogle Scholar
  25. Nugroho RA, Röling WFM, Laverman AM, Verhoef HA (2007) Low nitrification rates in acid Scots pine forest soils are due to pH-related factors. Microb Ecol 53:89–97. doi: 10.1007/s00248-006-9142-9 CrossRefPubMedGoogle Scholar
  26. Okano Y, Hristova KR, Leutenegger CM, Jackson LE, Denison RF, Gebreyesus B, Lebauer D, Scow KM (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70:1008–1016. doi: 10.1128/AEM.70.2.1008-1016.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Partey ST, Preziosi RF, Robson GD (2013) Maize residue interaction with high quality organic materials: effects on decomposition and nutrient release dynamics. Agric Res 2:58–67. doi: 10.1007/s40003-013-0051-0 CrossRefGoogle Scholar
  28. Phillips CJ, Harris D, Dollhopf SL, Gross KL, Prosser JI, Paul EA (2000) Effects of agronomic treatments on structure and function of ammonia-oxidizing communities. Appl Environ Microbiol 66:5410–5418. doi: 10.1128/AEM.66.12.5410-5418.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Priha O, Smolander A (1995) Nitrification, denitrification and microbial biomass N in soil from two N-fertilized and limed Norway spruce forests. Soil Biol Biochem 27:305–310. doi: 10.1016/0038-0717(94)00181-Y CrossRefGoogle Scholar
  30. Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531. doi: 10.1016/j.tim.2012.08.001 CrossRefPubMedGoogle Scholar
  31. Qin HL, Yuan HZ, Zhang H, Zhu YJ, Yin C, Tan Z, Wu JS, Wei WX (2013) Ammonia-oxidizing archaea are more important than ammonia-oxidizing bacteria in nitrification and NO3-N loss in acidic soil of sloped land. Biol Fertil Soils 49:767–776. doi: 10.1007/s00374-012-0767-1 CrossRefGoogle Scholar
  32. Ross DS, Hales HC (2003) Sampling-induced increases in net nitrification in the brush brook (Vermont) watershed. Soil Sci Soc Am J 67:318. doi: 10.2136/sssaj2003.3180 CrossRefGoogle Scholar
  33. Rudisill MA, Turco RF, Hoagland LA (2016) Fertility practices and rhizosphere effects alter ammonia oxidizer community structure and potential nitrification activity in pepper production soils. Appl Soil Ecol 99:70–77. doi: 10.1016/j.apsoil.2015.10.011 CrossRefGoogle Scholar
  34. Saleh ME, Mahmoud AH, Rashad M (2012) Peanut biochar as a stable adsorbent for removing NH4-N from wastewater: a preliminary study. Adv Environ Biol 6:2170–2176Google Scholar
  35. Stewart FJ, Ulloa O, DeLong EF (2012) Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environ Microbiol 14:23–40. doi: 10.1111/j.1462-2920.2010.02400.x CrossRefPubMedGoogle Scholar
  36. Stopnišek N, Gubry-Rangin C, Höfferle Š, Nicol GW, Mandic-Mulec I, Prosser JI (2010) Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment. Appl Environ Microbiol 76:7626–7634. doi: 10.1128/AEM.00595-10 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Tian XF, Hu HW, Ding Q, Song MH, Xu XL, Zheng Y, Guo LD (2014) Influence of nitrogen fertilization on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow. Biol Fertil Soils 50:703–713. doi: 10.1007/s00374-013-0889-0 CrossRefGoogle Scholar
  38. Ulyett J, Sakrabani R, Kibblewhite M, Hann M (2014) Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils. Eur J Soil Sci 65:96–104. doi: 10.1111/ejss.12081 CrossRefGoogle Scholar
  39. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. doi: 10.1016/0038-0717(87)90052-6 CrossRefGoogle Scholar
  40. Wang J, Zhang L, Lu Q, Raza W, Huang Q, Shen Q (2014) Ammonia oxidizer abundance in paddy soil profile with different fertilizer regimes. Appl Soil Ecol 84:38–44. doi: 10.1016/j.apsoil.2014.06.009 CrossRefGoogle Scholar
  41. Wang Z, Zong H, Zheng H, Liu G, Chen L, Xing B (2015) Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere 138:576–583. doi: 10.1016/j.chemosphere.2015.06.084 CrossRefPubMedGoogle Scholar
  42. Wang Q, Zhang LM, Shen JP, Du S, Han LL, He JZ (2016) Nitrogen fertiliser-induced changes in N2O emissions are attributed more to ammonia-oxidising bacteria rather than archaea as revealed using 1-octyne and acetylene inhibitors in two arable soils. Biol Fertil Soils 52:1163–1171. doi: 10.1007/s00374-016-1151-3 CrossRefGoogle Scholar
  43. Wessén E, Nyberg K, Jansson JK, Hallin S (2010) Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management. Appl Soil Ecol 45:193–200. doi: 10.1016/j.apsoil.2010.04.003 CrossRefGoogle Scholar
  44. Xu YG, Yu WT, Ma Q, Zhou H (2012) Responses of bacterial and archaeal ammonia oxidisers of an acidic luvisols soil to different nitrogen fertilization rates after 9 years. Biol Fertil Soils 48:827–837. doi: 10.1007/s00374-012-0677-2 CrossRefGoogle Scholar
  45. Yao H, Campbell CD, Qiao X (2011a) Soil pH controls nitrification and carbon substrate utilization more than urea or charcoal in some highly acidic soils. Biol Fertil Soils 47:515–522. doi: 10.1007/s00374-011-0554-4 CrossRefGoogle Scholar
  46. Yao H, Gao Y, Nicol GW, Campbell CD, Prosser JI, Zhang L, Han W, Singh BK (2011b) Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol 77:4618–4625. doi: 10.1128/AEM.00136-11
  47. Zhang K, Chen L, Li Y, Brookes PC, Xu J, Luo Y (2017) The effects of combination of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol Fertil Soils 53:77–87. doi:  10.1007/s00374-016-1154-0
  48. Zhao X, Wang S, Xing G (2014) Nitrification, acidification, and nitrogen leaching from subtropical cropland soils as affected by rice straw-based biochar: laboratory incubation and column leaching studies. J Soils Sediments 14:471–482. doi: 10.1007/s11368-013-0803-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciencesCzech University of Life Sciences PragueSuchdolCzech Republic
  2. 2.Departamento de Producción Agraria, Escuela Técnica Superior Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
  3. 3.Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA

Personalised recommendations