Biology and Fertility of Soils

, Volume 53, Issue 2, pp 247–256 | Cite as

Effects of pH and ionic strength on elemental sulphur oxidation in soil

  • Cuicui Zhao
  • Vadakattu V. S. R. Gupta
  • Fien Degryse
  • Mike J. McLaughlin
Original Paper

Abstract

Elemental S oxidation in soil is a microbially mediated process and is hypothesised to be influenced by changes to soil chemical properties such as acidity and ionic strength, which may arise from co-granulation with macronutrients or elemental S oxidation itself. Soil incubation was conducted with a sandy soil from South Australia to assess the effect of acidification and increased ionic strength on bacterial abundance and community composition and on elemental S oxidation during a 14-week incubation at 25 °C and 70% field capacity. Prior to incubation, the soil was treated with HNO3 to bring the pH to 6.7–4.4 or with KH2PO4 to increase the ionic strength by 0–0.7 M. Elemental S was applied at 200 mg kg−1 air-dried soil. Acidification or increased ionic strength had no or little effect on elemental S oxidation but decreased the abundances of 16S ribosomal deoxyribonucleic acid (rRNA) and soxB genes and changed the bacterial community composition. A second experiment with two other soils also showed that acidification did not, or only slightly, decreased elemental S oxidation, even though acidification strongly reduced 16S rRNA and soxB gene abundances in one of the soils. This study suggests that shifts in bacterial population brought about by temporary changes in pH and ionic strength, as may occur around fertiliser granules, have no or little effect on elemental S oxidation, indicating that the S-oxidising bacterial community in these agricultural soils contains functionally redundant taxa, which responded to changing conditions.

Keywords

Elemental S oxidation pH Ionic strength Bacterial population 

References

  1. Adamczyk-Winiarska Z, Król M, Kobus J (1975) Microbial oxidation of elemental sulphur in brown soil. Plant Soil 43:95–100. doi:10.1007/BF01928478 CrossRefGoogle Scholar
  2. Allison SD, Martiny JBH (2008) Resistance, resilience and redundancy in microbial communities. PNAS 105:11512–11519. doi:10.1073/pnas.0801925105 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anandham R, Indiragandhi P, Madhaiyan M (2008) Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants. Res Microbiol 159:579–589. doi:10.1016/j.resmic.2008.08.007 CrossRefPubMedGoogle Scholar
  4. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1046/j.1442-9993.2001.01070.x Google Scholar
  5. Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205–219. doi:10.3354/meps092205 CrossRefGoogle Scholar
  6. Donn MJ, Menzies NW (2005) Simulated rainwater effects on anion exchange capacity and nitrate retention in Ferrosols. Soil Res 43:33–42. doi:10.1071/SR04015 Source: OAICrossRefGoogle Scholar
  7. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853. doi:10.1093/nar/17.19.7843 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. PNAS 109:21390–21395. doi:10.1073/pnas.1215210110 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Franklin RB, Mills AL (2006) Structural and functional responses of a sewage microbial community to dilution-induced reductions in diversity. Microb Ecol 52:280–288. doi:10.1007/s00248-006-9033-0 CrossRefPubMedGoogle Scholar
  10. Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108. doi:10.1111/j.1574-697 6. 1994.tb00128.x CrossRefGoogle Scholar
  11. Grayston SJ, Wainwright M (1988) Sulphur oxidation by soil fungi including some species of mycorrhizae and wood-rotting basidiomycetes. FEMS Microbiol Lett 53:1–8. doi:10.1111/j.1574-6968.1988.tb02641.x CrossRefGoogle Scholar
  12. Gupta VVSR, Kroker SK, Hicks M, Davoren CW, Descheemaeker K, Llewellyn RS (2014) Nitrogen cycling in summer active perennial grass systems in South Australia: non-symbiotic nitrogen fixation. Crop Pasture Sci 65:1044–1056. doi:10.1071/CP14109 CrossRefGoogle Scholar
  13. Ibekwe AM, Poss JA, Grattan SR, Grieve CM, Suarez D (2010) Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biol Biochem 42:567–575. doi:10.1016/j.soilbio.2009.11.033 CrossRefGoogle Scholar
  14. Janzen HH, Bettany JR (1987) Measurement of sulfur oxidation in soils. Soil Sci 143:444–452. doi:10.1097/00010694-198706000-00008 CrossRefGoogle Scholar
  15. Kemmitt SJ, Wright D, Goulding KWT, Jones DL (2006) pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol Biochem 38:898–911. doi:10.1016/j.soilbio.2005.08.006 CrossRefGoogle Scholar
  16. Lawrence JR, Germida JJ (1988) Relationship between microbial biomass and elemental sulfur oxidation in agricultural soils. Soil Sci Soc Am J 52:672–677. doi:10.2136/sssaj1988.03615995005200030014x CrossRefGoogle Scholar
  17. Lee A, Watkinson JH, Orbell G, Bagyaraj J, Lauren DR (1987) Factors influencing dissolution of phosphate rock and oxidation of elemental sulphur in some New Zealand soils. New Zeal J Agr Res 30:373–385. doi:10.1080/00288233.1987.10421898 CrossRefGoogle Scholar
  18. Lehman RM, Acosta-Martinez V, Buyer JS, Cambardella CA, Collins HP, Ducey TF, Halvorson JJ, Jin VL, Johnson JMF, Kremer RJ, Lundgren JG, Manter DK, Maul JE, Smith JL, Stott DE (2015) Soil biology for resilient, healthy soil. J Soil Water Conserv 70:12A–18A. doi:10.2489/jswc.70.1.12A CrossRefGoogle Scholar
  19. Lettl A, Langkramer O, Lochman V (1981) Dynamics of oxidation of inorganic sulphur compounds in upper soil horizons of spruce forests. Folia Microbiol 26:24–28. doi:10.1007/BF02927219 CrossRefGoogle Scholar
  20. Li P, Caldwell AC (1966) The oxidation of elemental sulfur in soil. Soil Sci Soc Am J 30:370–372. doi:10.2136/sssaj1966.03615995003000030021x CrossRefGoogle Scholar
  21. Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461. doi:10.1016/S0038-0717(02)00297-3
  22. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670. doi:10.1046/j.1351-0754.2003.0556.x CrossRefGoogle Scholar
  23. Nor YM, Tabatabai MA (1977) Oxidation of elemental sulfur in soils. Soil Sci Soc Am J 41:736–741. doi:10.2136/sssaj1977.03615995004100040025x CrossRefGoogle Scholar
  24. Ollivier J, Wanat N, Austruy A, Hitmi A, Joussein E, Welzl G, Munch JC, Schloter M (2012) Abundance and diversity of ammonia-oxidizing prokaryotes in the root–rhizosphere complex of Miscanthus giganteus grown in heavy metal-contaminated soils. Microb Ecol 64:1038–1046. doi:10.1007/s00248-012-0078-y CrossRefPubMedGoogle Scholar
  25. Petersen DG, Blazewicz SJ, Firestone M, Herman DJ, Turetsky M, Waldrop M (2012) Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ Microbiol 14:993–1008. doi:10.1111/j.1462-2920.2011.02679.x CrossRefPubMedGoogle Scholar
  26. Petri R, Podgorsek L, Imhoff JF (2001) Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett 197:171–178. doi:10.1111/j.1574-6968.2001.tb10600.x CrossRefPubMedGoogle Scholar
  27. Prevost-Boure NC, Christen R, Dequiedt S, Mougel C, Lelievre M, Jolivet C, Shahbazkia HR, Guillou L, Arrouays D, Ranjard L (2011) Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS One 6:1–13Google Scholar
  28. Rothbaum H, Groom P (1961) Fire hazards in the use of fertilisers containing elemental sulphur. New Zealand J Sci 4:476–488Google Scholar
  29. Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351. doi:10.1038/ismej.2010.58 CrossRefPubMedGoogle Scholar
  30. Sample EC, Soper RJ, Racz GJ (1980) Reactions of phosphate fertilizers in soils. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. American Society of Agronomy, Crop Science Society of America Soil Science Society of America, Madison, pp. 263–310Google Scholar
  31. Shannon CE, Weaver W (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423. doi:10.1002/j.1538-7305.1948.tb01338.x CrossRefGoogle Scholar
  32. Suzuki I, Lee D, Mackay B, Harahuc L, Oh JK (1999) Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans. Appl Environ Microb 65:5163–5168Google Scholar
  33. Tan Y, Bond WJ, Rovira AD, Brisbane PG, Griffin DM (1991) Movement through soil of a biological control agent, Pseudomonas fluorescens. Soil Biol Biochem 23:821–825. doi:10.1016/0038-0717(91)90092-X CrossRefGoogle Scholar
  34. Tan Y, Bond WJ, Griffin DM (1992) Transport of bacteria during unsteady unsaturated soil water flow. Soil Sci Soc Am J 56:1331–1340. doi:10.2136/sssaj1992.03615995005600050001x CrossRefGoogle Scholar
  35. Tourna M, Maclean P, Condron L, O’Callaghan M, Wakelin SA (2014) Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiol Ecol 88:538–549. doi:10.1111/1574-6941.12323 CrossRefPubMedGoogle Scholar
  36. Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Guillaumaud N, Le Roux X (2007) Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environ Microbiol 9:2211–2219. doi:10.1111/j.1462-2920.2007.01335.x CrossRefPubMedGoogle Scholar
  37. Xia FF, Su Y, Wei XM, He YH, Wu ZC, Ghulam A, He R (2014) Diversity and activity of sulphur-oxidizing bacteria and sulphate-reducing bacteria in landfill cover soils. Lett Appl Microbiol 59:26–34. doi:10.1111/lam.12240 CrossRefPubMedGoogle Scholar
  38. Zhao C, Degryse F, Gupta VVSR, McLaughlin MJ (2015) Elemental sulfur oxidation in Australian cropping soils. Soil Sci Soc Am J 79:89–96. doi:10.2136/sssaj 201 4.08.0314 CrossRefGoogle Scholar
  39. Zhao C, Degryse F, Gupta VVSR, McLaughlin MJ (2016a) Low effective surface area explains slow oxidation of co-granulated elemental sulfur. Soil Sci Soc Am J 80:911–918. doi:10.2136/sssaj2015.09.0215 CrossRefGoogle Scholar
  40. Zhao C, Gupta VVSR, Degryse F, McLaughlin MJ (2016b). Abundance and diversity of S-oxidising bacteria and their role in elemental sulphur oxidation in Australian cropping soils. Biol Fertil Soils. doi:10.1007/s00374-016-1162-0

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Cuicui Zhao
    • 1
  • Vadakattu V. S. R. Gupta
    • 2
  • Fien Degryse
    • 1
  • Mike J. McLaughlin
    • 1
    • 3
  1. 1.Fertilizer Technology Research Centre, Soil Science, School of Agriculture, Food and WineThe University of AdelaideGlen OsmondAustralia
  2. 2.CSIRO Agriculture and FoodAdelaideAustralia
  3. 3.CSIRO Land and WaterAdelaideAustralia

Personalised recommendations