Advertisement

Biology and Fertility of Soils

, Volume 53, Issue 1, pp 9–22 | Cite as

Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments

  • Geertje J. PronkEmail author
  • Katja Heister
  • Cordula Vogel
  • Doreen Babin
  • Jörg Bachmann
  • Guo-Chun Ding
  • Franziska Ditterich
  • Martin H. Gerzabek
  • Julia Giebler
  • Michael Hemkemeyer
  • Ellen Kandeler
  • Yamuna Kunhi Mouvenchery
  • Anja Miltner
  • Christian Poll
  • Gabriele E. Schaumann
  • Kornelia Smalla
  • Annelie Steinbach
  • Irina Tanuwidjaja
  • Christoph C. Tebbe
  • Lukas Y. Wick
  • Susanne K. Woche
  • Kai U. Totsche
  • Michael Schloter
  • Ingrid Kögel-Knabner
Review

Abstract

Our understanding of the interactions between minerals, organic matter, and microorganisms at so-called biogeochemical interfaces in soil is still hampered by the inherent complexity of these systems. Artificial soil maturation experiments can help to bridge a gap in complexity between simple abiotic sorption experiments and larger-scale field experiments. By controlling other soil-forming factors, the effect of a particular variable can be identified in a simplified system. Here, we review the findings of a series of artificial soil incubation experiments with the aim of revealing general trends and conclusions. The artificial soils were designed to determine the effect of mineral composition and charcoal presence on the development of abiotic and biotic soil properties during maturation. In particular, the development of soil aggregates, organic matter (OM) composition and turnover, sorption properties, and the establishment of microbial community composition and function were considered. The main objectives of the research were to determine (1) how surface properties and sorption of chemicals modify biogeochemical interfaces; (2) how much time is required to form aggregates from mixtures of pure minerals, OM, and a microbial inoculum; and (3) how the presence of different mineral and charcoal surfaces affects aggregation, OM turnover, and the development of microbial community composition.

Keywords

Experimental pedology Soil organic matter Soil microbial ecology Secondary phyllosilicates Biogeochemical interfaces Interdisciplinary soil science 

Notes

Acknowledgements

This project was carried out within the framework of the priority program 1315 “Biogeochemical Interfaces in Soil” funded by the German Research Foundation (DFG) in the project “Parent materials as major properties of the biogeochemical interface: integrative analysis” (KO1035/45-1). I.K.-K. and G.J.P. are grateful for the support from the Technical University of Munich–Institute for Advanced Study, funded by the German Excellence Initiative. We thank two anonymous reviewers for valuable comments on the manuscript.

Supplementary material

374_2016_1161_MOESM1_ESM.docx (197 kb)
Online Resource 1 (DOCX 197 kb)
374_2016_1161_MOESM2_ESM.docx (131 kb)
Online Resource 2 (DOCX 131 kb)

References

  1. Amelung W, Miltner A, Zhang X, Zech W (2001) Fate of microbial residues during litter decomposition as affected by minerals. Soil Sci 166:598–606CrossRefGoogle Scholar
  2. Babin D, Ding GC, Pronk GJ, Heister K, Kögel-Knabner I, Smalla K (2013) Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene. FEMS Microbiol Ecol 86:3–14CrossRefPubMedGoogle Scholar
  3. Babin D, Vogel C, Zühlke S, Schloter M, Pronk GJ, Heister K, Spiteller M, Kögel-Knabner I, Smalla K (2014) Soil mineral composition matters: response of microbial communities to phenanthrene and plant litter addition in long-term matured artificial soils. PLoS One 9(9):e106865CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barré P, Fernandez-Ugalde O, Virto I, Velde B, Chenu C (2014) Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: incomplete knowledge and exciting prospects. Geoderma 235–236:382–395CrossRefGoogle Scholar
  5. Bockheim JG, Gennadiyev AN (2009) The value of controlled experiments in studying soil-forming processes: a review. Geoderma 152:208–217CrossRefGoogle Scholar
  6. Brevik EC, Cerdà A, Mataix-Solera J, Pereg L, Quinton JN, Six J, Van Oost K (2015) The interdisciplinary nature of SOIL—ProQuest. Soil 1:117–129CrossRefGoogle Scholar
  7. Chorover J, Armistadi MK (2001) Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces. Geochim Cosmochim Ac 65:95–109CrossRefGoogle Scholar
  8. Chorover J, Kretzschmar R, Garcia-Pichel F, Sparks DL (2007) Soil biogeochemical processes within the critical zone. Elements 3:321–326CrossRefGoogle Scholar
  9. Crawford JW, Deacon L, Grinev D, Harris JA, Ritz K, Singh BK, Young IA (2012) Microbial diversity affects self-organization of the soil-microbe system with consequences for function. J Roy Soc Interface 9:1301–1310CrossRefGoogle Scholar
  10. Dechesne A, Wang G, Gülez G, Or D, Smets BF (2010) Hydration-controlled bacterial motility and dispersal on surfaces. P Natl Aca dSci USA 107:14369–14372CrossRefGoogle Scholar
  11. Delmont TO, Francioli D, Jacquesson S, Laoudi S, Mathieu A, Nesme J, Ceccherini MT, Nannipieri P, Simonet P, Vogel TM (2014) Microbial community development and unseen diversity recovery in inoculated sterile soil. Biol Fert Soils 50:1069–1076CrossRefGoogle Scholar
  12. Ding GC, Heuer H, Smalla K (2012) Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders. Front Microbiol 3:290CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ding GC, Pronk GJ, Babin D, Heuer H, Heister K, Kögel-Knabner I, Smalla K (2013) Mineral composition and charcoal determine the bacterial community structure in artificial soils. FEMS MicrobiolEcol 86:15–25CrossRefGoogle Scholar
  14. Ditterich F, Poll C, Pronk GJ, Heister K, Chandran A, Rennert T, Kögel-Knabner I, Kandeler E (2016) Succession of soil microbial communities and enzyme activities in artificial soils. Pedobiologia 59:93–104CrossRefGoogle Scholar
  15. Dümig A, Smittenberg R, Kögel-Knabner I (2011) Concurrent evolution of organic and mineral components during initial soil development after retreat of the Damma glacier, Switzerland. Geoderma 163:83–94CrossRefGoogle Scholar
  16. Ellis RJ (2004) Artificial soil microcosms: a tool for studying microbial autecology under controlled conditions. J Microbiol Method 56:287–290CrossRefGoogle Scholar
  17. Epstein SS (2009) Microbial awakenings. Nature 457:1083CrossRefPubMedGoogle Scholar
  18. Esperschütz J, Pérez-de-Mora A, Schreiner K, Welzl G, Buegger F, Zeyer J, Hagedorn F, Munch JC, Schloter M (2011) Microbial food web dynamics along a soil chronosequence of a glacier forefield. Biogeosci 8:3283–3294CrossRefGoogle Scholar
  19. Eusterhues K, Wagner FE, Häusler W, Hanzlik M, Knicker H, Totsche KU, Kögel-Knabner I, Schwertmann U (2008) Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and Mössbauer spectroscopy. Env Sci Technol 42:7891–7897CrossRefGoogle Scholar
  20. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364CrossRefPubMedGoogle Scholar
  21. Giebler J, Wick LY, Chatzinotas A, Harms H (2013) Alkane-degrading bacteria at the soil-litter interface: comparing isolates with T-RFLP-based community profiles. FEMS Microbiol Ecol 86:45–58CrossRefPubMedGoogle Scholar
  22. Guenet B, Leloup J, Hartmann C, Barot S, Abbadie L (2011) A new protocol for an artificial soil to analyse soil microbiological processes. Appl Soil Ecol 48:243–246CrossRefGoogle Scholar
  23. Haberhauer G, Pfeiffer L, Gerzabek MH, Kirchmann H, Aquino AJA, Tunega D, Lischka H (2001) Response of sorption processes of MCPA to the amount and origin of organic matter in a long-term field experiment. Eur J Soil Sci 52:279–286CrossRefGoogle Scholar
  24. Hallsworth EG, Crawford DV (1965) Experimental pedology. Butterworths, LondonGoogle Scholar
  25. Heckman K, Grandy AS, Gao X, Keiluweit M, Wickings K, Carpenter K, Chorover J, Rasmussen C (2013a) Sorptive fractionation of organic matter and formation of organo-hydroxy-aluminum complexes during litter biodegradation in the presence of gibbsite. Geochim Cosmochim Ac 121:667–683CrossRefGoogle Scholar
  26. Heckman K, Vazquez-Ortega A, Gao X, Chorover J, Rasmussen C (2011) Changes in water extractable organic matter during incubation of forest floor material in the presence of quartz, goethite and gibbsite surfaces. Geochim Cosmochim Ac 75:4295–4309CrossRefGoogle Scholar
  27. Heckman K, Welty-Bernard A, Vazquez-Ortega A, Schwartz E, Chorover J, Rasmussen C (2013b) The influence of goethite and gibbsite on soluble nutrient dynamics and microbial community composition. Biogeochemistry 112:179–195CrossRefGoogle Scholar
  28. Heister K, Höschen C, Pronk GJ, Mueller CW, Kögel-Knabner I (2012) NanoSIMS as a tool for characterizing soil model compounds and organomineral associations in artificial soils. J Soils Sediment 12:35–47CrossRefGoogle Scholar
  29. Hemkemeyer M, Pronk GJ, Heister K, Kögel-Knabner I, Martens R, Tebbe CC (2014) Artificial soil studies reveal domain-specific preferences of microorganisms for the colonisation of different soil minerals and particle size fractions. FEMS Microbiol Ecol 90:770–782CrossRefPubMedGoogle Scholar
  30. Huggett RJ (1998) Soil chronosequences, soil development, and soil evolution: a critical review. Catena 32:155–172CrossRefGoogle Scholar
  31. Jenny H (1941) Factors of soil formation: a system of quantitative pedology. McGraw-Hill, New YorkGoogle Scholar
  32. Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84CrossRefPubMedGoogle Scholar
  33. Jozefaciuk G, Czachor H (2014) Impact of organic matter, iron oxides, alumina, silica and drying on mechanical and water stability of artificial soil aggregates. Assessment of new method to study water stability. Geoderma 221-222:1–10CrossRefGoogle Scholar
  34. Kaiser K, Guggenberger G, Zech W (1996) Sorption of DOM and DOM fractions to forest soils. Geoderma 74:281–303CrossRefGoogle Scholar
  35. Kaiser M, Kleber M, Myrold DD (2014) Influence of calcium carbonate and charcoal applications on organic matter storage in silt-sized aggregates formed during a microcosm experiment. Soil Sci Soc Am J 78:1624–1631CrossRefGoogle Scholar
  36. Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico PS (2015) Mineral–organic associations: formation, properties, and relevance in soil environments. Adv Agron 130:2–140Google Scholar
  37. Kunhi Mouvenchery Y (2013) Insight into physicochemical structure of soil organic matter by cation interaction and nanothermal properties. Dissertation, University Koblenz-Landau. http://kola.opus.hbz-nrw.de/frontdoor.php?source_opus=925&la=de
  38. Lamparter A, Bachmann J, Woche SK, Goebel MO (2014) Biogeochemical interface formation: wettability affected by organic matter sorption and microbial activity. Vadose Zone J 13(7). doi: 10.2136/vzj2013.10.0175
  39. Leifeld J, Siebert S, Kögel-Knabner I (2001) Stabilization of composted organic matter after application to a humus-free sandy mining soil. J Environ Qual 30:602–607CrossRefPubMedGoogle Scholar
  40. Leinweber P, Reuter G (1992) The influence of different organic fertilization practices on concentrations of organic carbon and total nitrogen in particle-size fractions during 34 years of a soil formation experiment in loamy marl. Biol Fert Soils 13:119–124CrossRefGoogle Scholar
  41. Macht F, Eusterhues K, Pronk GJ, Totsche KU (2011) Specific surface area of clay minerals: comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Applied Clay Sci 53:20–26CrossRefGoogle Scholar
  42. Mikutta R, Schaumann G, Gildemeister D, Bonneville S, Kramer MG, Chorover J, Chadwick OA, Guggenberger G (2009) Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3–4100 kyr), Hawaiian Islands. Geochim Cosmochim Ac 73:2034–2060CrossRefGoogle Scholar
  43. Mikutta R, Zang U, Chorover J, Haumaier L, Kalbitz K (2011) Stabilization of extracellular polymeric substances (Bacillus subtilis) by adsorption to and coprecipitation with Al forms. Geochim Cosmochim Ac 75:3135–3154CrossRefGoogle Scholar
  44. Miltner A, Zech W (1999) Microbial degradation and resynthesis of proteins during incubation of beech leaf litter in the presence of mineral phases. Biol Fert Soils 30:48–51CrossRefGoogle Scholar
  45. Muehl GJH, Ruehlmann J, Goebel MO, Bachmann J (2012) Application of confocal laser scanning microscopy (CLSM) to visualize the effect of porous media wettability on unsaturated pore water configuration. J Soils Sediments 12:75–85CrossRefGoogle Scholar
  46. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670CrossRefGoogle Scholar
  47. Nazir R, Semenov AV, Sarigul N, van Elsas JD (2013) Bacterial community establishment in native and non-native soils and the effect of fungal colonization. Microbiol Discovery 1:8  http://dx.doi.org/10.7243/2052-6180-1-8 CrossRefGoogle Scholar
  48. Neumann D, Heuer A, Hemkemeyer M, Martens R, Tebbe CC (2013) Response of microbial communities to long-term fertilization depends on their microhabitat. FEMS Microbiol Ecol 86:71–84CrossRefPubMedGoogle Scholar
  49. Oades J (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337CrossRefGoogle Scholar
  50. Oades JM, Waters AG (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815–828CrossRefGoogle Scholar
  51. OECD (2004) Guideline for Testing Chemicals No. 222, Earthworm Reproduction Test. ParisGoogle Scholar
  52. Or D, Smets BF, Wraith JM, Dechesne A, Friedman SP (2007) Physical constraints affecting bacterial habitats and activity in unsaturated porous media—a review. Adv Water Res 30:1505–1527CrossRefGoogle Scholar
  53. Pallud C, Kausch M, Fendorf S, Meile C (2009) Spatial patterns and modeling of reductive ferrihydrite transformation observed in artificial soil aggregates. Env Sci Technol 44:74–79CrossRefGoogle Scholar
  54. Pronk GJ (2011) Biogeochemical interfaces in natural and artificial soil systems: specific surface area, phenanthrene sorptive properties and formation of organo-mineral associations. Dissertation, Technische Universität München https://mediatum.ub.tum.de/?id=1081456.
  55. Pronk GJ, Heister K, Ding GC, Smalla K, Kögel-Knabner I (2012) Development of biogeochemical interfaces in an artificial soil incubation experiment; aggregation and formation of organo-mineral associations. Geoderma 189–190:585–594CrossRefGoogle Scholar
  56. Pronk GJ, Heister K, Kögel-Knabner I (2013) Is turnover and development of organic matter controlled by mineral composition? Soil Biol Biochem 67:235–244CrossRefGoogle Scholar
  57. Pronk GJ, Heister K, Kögel-Knabner I (2015) Amino sugars reflect microbial residues as affected by clay mineral composition of artificial soils. Organic Geochem 83-84:109–113CrossRefGoogle Scholar
  58. Raynaud X, Nunan N (2014) Spatial ecology of bacteria at the microscale in soil. PLoS One 9:e87217CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ruamps LS, Nunan N, Pouteau V, Leloup J, Raynaud X, Roy V, Chenu C (2013) Regulation of soil organic C mineralisation at the pore scale. FEMS Microbiol Ecol 86:26–35CrossRefPubMedGoogle Scholar
  60. Saidy AR, Smernik RJ, Baldock JA, Kaiser K, Sanderman J, Macdonald LM (2012) Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma 173–174:104–110CrossRefGoogle Scholar
  61. Schaaf W, Bens O, Fischer A, Gerke HH, Gerwin W, Gruenewald U, Holländer HM, Kögel-Knabner I, Mutz M, Schloter M, Schulin R, Veste M, Winter S, Huettl RF (2011) Patterns and processes of initial terrestrial-ecosystem development. J Plant Nutr Soil Sci 174:229–239CrossRefGoogle Scholar
  62. Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Frontiers Microbiol 3:1–11CrossRefGoogle Scholar
  63. Schnitzer M, Kodama H (1972) Differential thermal analysis of metal-fulvic acid salts and complexes. Geoderma 7:93–103CrossRefGoogle Scholar
  64. Schulz S, Giebler J, Chatzinotas A, Wick LY, Fetzer I, Welzl G, Harms H, Schloter M (2012) Plant litter and soil type drive abundance, activity and community structure of alkB harbouring microbes in different soil compartments. ISME J 6:1763–1774CrossRefPubMedPubMedCentralGoogle Scholar
  65. Schurig C, Smittenberg RH, Berger J, Kraft F, Woche SK, Goebel MO, Heipieper HJ, Miltner A, Kaestner M (2013) Microbial cell-envelope fragments and the formation of soil organic matter: a case study from a glacier forefield. Biogeochemistry 113:595–612CrossRefGoogle Scholar
  66. Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till Res 79:7–31CrossRefGoogle Scholar
  67. Steinbach A, Schulz S, Giebler J, Schulz S, Pronk GJ, Kögel-Knabner I, Harms H, Wick LY, Schloter M (2015) Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation. ISME J 9:1687–1691CrossRefPubMedGoogle Scholar
  68. Sukul P, Lamshöft M, Zühlke S, Spiteller M (2013) Evaluation of sorption-desorption processes for metalaxyl in natural and artificial soils. J Environ Sci Heal B 48:431–441CrossRefGoogle Scholar
  69. Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163CrossRefGoogle Scholar
  70. Totsche KU, Rennert T, Gerzabek MH, Kögel-Knabner I, Smalla K, Spiteller M, Vogel HJ (2010) Biogeochemical interfaces in soil: the interdisciplinary challenge for soil science. J Plant Nutr Soil Sc 173:88–99CrossRefGoogle Scholar
  71. Treves DS, Xia B, Zhou J, Tiedje JM (2003) A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microb Ecol 45:20–28CrossRefPubMedGoogle Scholar
  72. Tscherko D, Rustemeier J, Richter A, Wanek W, Kandeler E (2003) Functional diversity of the soil microbial community in primary succession along two glacier forelands in the Central Alps. Eur J Soil Sci 54:685–696CrossRefGoogle Scholar
  73. Vogel C, Babin D, Pronk GJ, Heister K, Smalla K, Kögel-Knabner I (2014) Establishment of macro-aggregates and organic matter turnover by microbial communities in long-term incubated artificial soils. Soil Biol Biochem 79:1–11CrossRefGoogle Scholar
  74. Vogel C, Heister K, Buegger F, Tanuwidjaja I, Haug S, Schloter M, Kögel-Knabner I (2015) Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions. Biol Fert Soils 51:427–442CrossRefGoogle Scholar
  75. Vos M, Wolf AB, Jennings SJ, Kowalchuk GA (2013) Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol Rev 37:936–954CrossRefPubMedGoogle Scholar
  76. Wagner S, Cattle SR, Scholten T (2007) Soil-aggregate formation as influenced by clay content and organic-matter amendment. J Plant Nutr Soil Sci 170:173–180CrossRefGoogle Scholar
  77. Waldner G, Friesl-Hanl W, Haberhauer G, Gerzabek MH (2012) Differences in sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid on artificial soils as a function of soil pre-aging. J Soils Sediments 12:1292–1298CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wei H, Guenet B, Vicca S, Nunan N, AbdElgawad H, Pouteau V, Shen W, Janssens IA (2014a) Thermal acclimation of organic matter decomposition in an artificial forest soil is related to shifts in microbial community structure. Soil Biol Biochem 71:1–12CrossRefGoogle Scholar
  79. Wei H, Guenet B, Vicca S, Nunan N, Asard H, AbdElgawad H, Shen W, Janssens IA (2014b) High clay content accelerates the decomposition of fresh organic matter in artificial soils. Soil Biol Biochem 77:100–108CrossRefGoogle Scholar
  80. Weigand H, Totsche KU (1998) Flow and reactivity effects on dissolved organic matter transport in soil columns. Soil Sci Soc Am J 62:1268–1274CrossRefGoogle Scholar
  81. Wolf AB, Vos M, de Boer W, Kowalchuk GA (2013) Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria. PLoS One 8:e83661CrossRefPubMedPubMedCentralGoogle Scholar
  82. Young IM, Crawford JW (2004) Interactions and self-organization in the soil-microbe complex. Science 304:1634–1637CrossRefPubMedGoogle Scholar
  83. Zhang J, Loynachan TE, Raich JW (2011) Artificial soils to assess temperature sensitivity of the decomposition of model organic compounds: effects of chemical recalcitrance and clay-mineral composition. Eur J Soil Sci 62:863–873CrossRefGoogle Scholar
  84. Zehetner F, Lair GJ, Gerzabek MH (2009) Rapid carbon accretion and organic matter pool stabilization in riverine floodplain soils. Global Biogeochem Cy 23:GB4004CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Geertje J. Pronk
    • 1
    • 2
    • 3
    Email author
  • Katja Heister
    • 2
    • 4
  • Cordula Vogel
    • 2
    • 5
  • Doreen Babin
    • 6
  • Jörg Bachmann
    • 7
  • Guo-Chun Ding
    • 6
    • 8
  • Franziska Ditterich
    • 9
  • Martin H. Gerzabek
    • 10
  • Julia Giebler
    • 11
    • 12
  • Michael Hemkemeyer
    • 13
  • Ellen Kandeler
    • 9
  • Yamuna Kunhi Mouvenchery
    • 14
    • 15
  • Anja Miltner
    • 16
  • Christian Poll
    • 9
  • Gabriele E. Schaumann
    • 14
  • Kornelia Smalla
    • 6
  • Annelie Steinbach
    • 11
  • Irina Tanuwidjaja
    • 17
  • Christoph C. Tebbe
    • 13
  • Lukas Y. Wick
    • 11
  • Susanne K. Woche
    • 7
  • Kai U. Totsche
    • 18
  • Michael Schloter
    • 17
  • Ingrid Kögel-Knabner
    • 2
    • 3
  1. 1.Ecohydrology Research GroupUniversity of WaterlooWaterlooCanada
  2. 2.Lehrstuhl für BodenkundeTechnische Universität MünchenFreisingGermany
  3. 3.Institute for Advanced StudyTechnische Universität MünchenGarchingGermany
  4. 4.GeoLab, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
  5. 5.Institute of Soil Science and Site EcologyDresden University of TechnologyTharandtGermany
  6. 6.Julius Kühn-Institut—Federal Research Centre for Cultivated Plants (JKI)Institute for Epidemiology and Pathogen DiagnosticsBraunschweigGermany
  7. 7.Institute of Soil ScienceLeibniz Universität HannoverHannoverGermany
  8. 8.College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
  9. 9.Institute of Soil Science and Land Evaluation, Soil Biology DepartmentUniversity of HohenheimStuttgartGermany
  10. 10.Institute of Soil ResearchUniversity of Natural Resources and Life Sciences ViennaViennaAustria
  11. 11.Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research—UFZLeipzigGermany
  12. 12.Scientific Administrative Project SupervisionHelmholtz Centre for Environmental Research—UFZLeipzigGermany
  13. 13.Thünen Institute of BiodiversityFederal Research Institute for Rural Areas, Forestry and FisheriesBraunschweigGermany
  14. 14.Institute for Environmental Sciences, Group of Environmental and Soil ChemistryUniversity KoblenzLandauGermany
  15. 15.Department of ChemistryNSS CollegeManjeriIndia
  16. 16.Department of Environmental BiotechnologyUFZ—Helmholtz Centre for Environmental ResearchLeipzigGermany
  17. 17.Research Unit for Environmental GenomicsHelmholtz Zentrum MünchenOberschleißheimGermany
  18. 18.Lehrstuhl für HydrogeologieFriedrich-Schiller Universität JenaJenaGermany

Personalised recommendations