Biology and Fertility of Soils

, Volume 52, Issue 3, pp 377–387 | Cite as

Effect of GFP tagging of Paenibacillus polymyxa P2b-2R on its ability to promote growth of canola and tomato seedlings

  • Kiran Preet PaddaEmail author
  • Akshit Puri
  • Chris P. Chanway
Original Paper


Green fluorescent protein (GFP) is used extensively in detecting internal tissue colonization by endophytes of various genera, but our knowledge about the effects of GFP tagging is very limited. We wanted to determine if a GFP-labeled derivative of Paenibacillus polymyxa P2b-2R (P2b-2Rgfp) would fix N and promote growth of two important crop species, canola and tomato, in ways similar to the wild-type P2b-2R. To evaluate this, canola and tomato seeds were inoculated with P2b-2R or P2b-2Rgfp and grown for 40 days in sterile conditions inside a growth chamber. P2b-2Rgfp-inoculated seedlings were compared with uninoculated controls and P2b-2R-inoculated seedlings, after 20, 30, and 40 days of inoculation for biological N fixation (15N dilution) and growth response (length and biomass). The entire experiment was repeated to confirm the treatment effects. It was found that canola seedlings inoculated with P2b-2Rgfp had 118 % more biomass than controls and 69 % more biomass than P2b-2R-treated seedlings; were 69 % longer than controls and 37 % longer than seedlings inoculated with P2b-2R; and derived 22 % of their N from the atmosphere (6 % more than P2b-2R-treated canola seedlings). This shows that canola seedlings responded remarkably to P2b-2Rgfp inoculation, even better than wild-type P2b-2R inoculation. But, in the case of tomato, P2b-2Rgfp-inoculated seedlings were statistically analogous to the P2b-2R-inoculated seedlings in terms of growth promotion and N fixation. Seedlings inoculated with either P2b-2Rgfp or P2b-2R were nearly 40 % longer than controls, assimilated nearly 90 % more biomass than controls, and fixed nearly 17 % of N from the atmosphere. To the best of our knowledge, results of canola represent the very first evidence that transformation of an endophyte by GFP can significantly enhance its plant growth-promoting efficacy. Contrasting results of tomato suggest that the positive effects of GFP tagging of P2b-2R might vary depending on the host plant.


Green fluorescent protein Endophyte Plant growth-promoting bacteria Biological nitrogen fixation Paenibacillus polymyxa 



This work was supported through funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN 41832-13) to Dr. Chris P Chanway. The authors would like to acknowledge the SeCan Association for generously providing canola seeds used in this study.


  1. Anand R, Chanway CP (2013a) Detection of GFP-labeled Paenibacillus polymyxa in autofluorescing pine seedling tissues. Biol Fertil Soils 49:111–118. doi: 10.1007/s00374-012-0727-9 CrossRefGoogle Scholar
  2. Anand R, Chanway C (2013b) N2-fixation and growth promotion in cedar colonized by an endophytic strain of Paenibacillus polymyxa. Biol Fertil Soils 49:235–239. doi: 10.1007/s00374-012-0735-9 CrossRefGoogle Scholar
  3. Anand R, Grayston S, Chanway C (2013) N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa. Microbial Ecol 66:369–374. doi: 10.1007/s00248-013-0196-1 CrossRefGoogle Scholar
  4. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. A Van Leeuw J Microb 64:253–260. doi: 10.1007/BF00873085 CrossRefGoogle Scholar
  5. Bal A, Chanway CP (2012a) Evidence of nitrogen fixation in lodgepole pine inoculated with diazotrophic Paenibacillus polymyxa. Botany 90:891–896. doi: 10.1139/b2012-044 CrossRefGoogle Scholar
  6. Bal A, Chanway CP (2012b) 15N foliar dilution of western red cedar in response to seed inoculation with diazotrophic Paenibacillus polymyxa. Biol Fertil Soils 48:967–971. doi: 10.1007/s00374-012-0699-9 CrossRefGoogle Scholar
  7. Bal A, Anand R, Berge O, Chanway C (2012) Isolation and identification of diazotrophic bacteria from internal tissues of Pinus contorta and Thuja plicata. Can J For Res 42:807–813. doi: 10.1139/x2012-023 CrossRefGoogle Scholar
  8. Bashan Y, Holguin G (1998) Proposal for the division of plant growth promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228. doi: 10.1016/S0038-0717(97)00187-9 CrossRefGoogle Scholar
  9. Beatty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48:159–169. doi: 10.1139/w02-002 CrossRefPubMedGoogle Scholar
  10. Borriss R (2015) Bacillus, a plant-beneficial bacterium. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer International Publishing, Switzerland, pp 379–391. doi: 10.1007/978-3-319-08575-3_40 Google Scholar
  11. Canola Council of Canada (n.d.) Industry Overview. Accessed 25 November 2015
  12. Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci U S A 96:5952–5959. doi: 10.1073/pnas.96.11.5952 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805. doi: 10.1126/science.8303295 CrossRefPubMedGoogle Scholar
  14. Chanway CP (2008) Plant growth promotion by Bacillus and relatives. In: Berkeley R, Heyndrickx M, Logan N, de Vos P (Eds) Applications and Systematics of Bacillus and Relatives. Blackwell Science Ltd, Oxford, pp 219–235Google Scholar
  15. Chanway CP, Nelson LM, Holl FB (1988) Cultivar-specific growth promotion of spring wheat (Triticum aestivum L.) by coexistent Bacillus species. Can J Microbiol 34:925–929. doi: 10.1139/m88-164 CrossRefGoogle Scholar
  16. Choi SK, Park SY, Kim R, Lee CH, Kim JF, Park SH (2008) Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochem Biophys Res Commun 365:89–95. doi: 10.1016/j.bbrc.2007.10.147 CrossRefPubMedGoogle Scholar
  17. Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693. doi: 10.1128/AEM.71.4.1685-1693.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. doi: 10.1016/j.soilbio.2009.11.024 CrossRefGoogle Scholar
  19. de Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol 61:171–189. doi: 10.1016/j.apsoil.2011.09.003 CrossRefGoogle Scholar
  20. Ferreira A, Quecine M, Lacava P, Oda S, Azevedo J, Araujo W (2008) Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14. doi: 10.1111/j.1574-6968.2008.01258.x CrossRefPubMedGoogle Scholar
  21. Garming H (2014) Tomatoes are the superlative vegetable: global per capita consumption is 20 kilograms per year. agri benchmark. Accessed 25 November 2015
  22. Germaine K, Keogh E, Garcia-Cabellos G et al (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118. doi: 10.1016/j.femsec.2003.12.009 CrossRefPubMedGoogle Scholar
  23. Glick BR (2015) Introduction to plant growth-promoting bacteria. In: Glick BR (ed) Beneficial plant-bacterial interactions. Springer International Publishing, Switzerland, pp 1–28. doi: 10.1007/978-3-319-13921-0_1 Google Scholar
  24. Götz M, Gomes NC, Dratwinski A, Costa R, Berg G, Peixoto R, Smalla K (2006) Survival of gfp-tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiol Ecol 56:207–218. doi: 10.1111/j.1574.6941.2006.0093.x CrossRefPubMedGoogle Scholar
  25. Guemouri-Athmani S, Berge O, Bourrain M, Mavingui P, Thiéry JM, Bhatnagar T, Heulin T (2000) Diversity of Paenibacillus polymyxa in the rhizosphere of wheat (Triticum durum) in Algerian soils. Eur J Soil Biol 36:149–159. doi: 10.1016/S1164-5563(00)01056-6 CrossRefGoogle Scholar
  26. Han J, Chen D, Huang J, Li X, Zhou WW, Gao W, Jia Y (2015) Antifungal activity and biocontrol potential of Paenibacillus polymyxa HT16 against white rot pathogen (Coniella diplodiella Speq.) in table grapes. Biocontrol Sci Technol 25:1120–1132. doi: 10.1080/09583157.2015.1036003 CrossRefGoogle Scholar
  27. He Z, Kisla D, Zhang L, Yuan C, Green-Church KB, Yousef AE (2007) Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel antibiotic and polymyxin. Appl Environ Microbiol 73:168–178. doi: 10.1128/AEM.02023-06 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Heulin T, Berge O, Mavingui P, Gouzou L, Hebbar K, Balandreau J (1994) Bacillus polymyxa and Rahnella aquatilis, the dominant N2-fixing bacteria associated with wheat rhizosphere in French soils. Eur J Soil Biol 30:35–42Google Scholar
  29. Holl FB, Chanway CP, Turkington R, Radley RA (1988) Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol Biochem 20:19–24. doi: 10.1016/0038-0717(88)90121-6 CrossRefGoogle Scholar
  30. Ji SH, Gururani MA, Chun SC (2014) Expression analysis of rice pathogenesis-related proteins involved in stress response and endophytic colonization properties of gfp-tagged Bacillus subtilis CB-R05. Appl Biochem Biotechnol 174:231–241. doi: 10.1007/s12010-014-1047-3 CrossRefPubMedGoogle Scholar
  31. Kandel SL, Herschberger N, Kim SH, Doty SL (2015) Diazotrophic endophytes of poplar and willow for growth promotion of rice plants in nitrogen-limited conditions. Crop Sci 55:1765–1772. doi: 10.2135/cropsci2014.08.0570 CrossRefGoogle Scholar
  32. Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183. doi: 10.1007/s11816-010-0136-1 CrossRefGoogle Scholar
  33. Kim YC, Glick BR, Bashan Y, Ryu CM (2012) Enhancement of plant drought tolerance by microbes. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer, Heidelberg, pp 383–413. doi: 10.1007/978-3-642-32653-0_15 CrossRefGoogle Scholar
  34. Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria in radish. In: Station de Pathologic Vegetal et Phytobacteriologic (ed.). Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Vol 2. Gilbert-Clarey, Angers, pp 879–882Google Scholar
  35. Lal S, Tabacchioni S (2009) Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J Microbiol 49:2–10. doi: 10.1007/s12088-009-0008-y CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lindberg T, Granhall U (1986) Acetylene reduction in gnotobiotic cultures with rhizosphere bacteria and wheat. Plant Soil 92:171–180. doi: 10.1007/BF02372631 CrossRefGoogle Scholar
  37. Lindberg T, Granhall U, Tomenius K (1985) Infectivity and acetylene reduction of diazotrophic rhizosphere bacteria in wheat (Triticum aestivum) seedlings under gnotobiotic conditions. Biol Fertil Soils 1:123–129. doi: 10.1007/BF00301779 CrossRefGoogle Scholar
  38. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509. doi: 10.1126/science.277.5325.504 CrossRefPubMedGoogle Scholar
  39. Meng X, Yan D, Long X, Wang C, Liu Z, Rengel Z (2014) Colonization by endophytic Ochrobactrum anthropi Mn1 promotes growth of Jerusalem artichoke. Microb Biotechnol 7:601–610. doi: 10.1111/1751-7915.12145 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mok MC (1994) Cytokinins and plant development—an overview. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity and function. CRC Press, New York, pp 115–166Google Scholar
  41. Palacios OA, Bashan Y, de-Bashan LE (2014) Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—an overview. Biol Fertil Soils 50:415-432. doi: 10.1007/s00374-013-0894-3
  42. Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51:403–415. doi: 10.1007/s00374-015-0996-1 CrossRefGoogle Scholar
  43. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of Aequorea victoria green-fluorescent protein. Gene 111:229–233. doi: 10.1016/0378-1119(92)90691-H CrossRefPubMedGoogle Scholar
  44. Puri A, Padda KP, Chanway CP (2015a) Can a diazotrophic endophyte originally isolated from lodgepole pine colonize an agricultural crop (corn) and promote its growth? Soil Biol Biochem 89:210–216. doi: 10.1016/j.soilbio.2015.07.012 CrossRefGoogle Scholar
  45. Puri A, Padda KP, Chanway CP (2015b) Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R. Biol Fertil Soils. doi:  10.1007/s00374-015-1051-y
  46. Ravi AV, Musthafa KS, Jegathammbal G, Kathiresan K, Pandian SK (2007) Screening and evaluation of probiotics as a biocontrol agent against pathogenic Vibrios in marine aquaculture. Lett Appl Microbiol 45:219–223. doi: 10.1111/j.1472-765X.2007.02180.x CrossRefPubMedGoogle Scholar
  47. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443. doi: 10.1016/j.pbi.2011.04.004 CrossRefPubMedGoogle Scholar
  48. Rennie RJ (1981) A single medium for the isolation of acetylene reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol 27:8–14. doi: 10.1139/m81-002 CrossRefPubMedGoogle Scholar
  49. Rennie RJ, Fried M, Rennie DA (1978) Concepts of 15N usage in dinitrogen fixation studies. In: Isotopes in biological dinitrogen fixation. International Atomic Energy Agency, Vienna, Austria, pp 107–131Google Scholar
  50. Rosado AS, Seldin L (1993) Production of a potentially novel anti-microbial substance by Bacillus polymyxa. World J Microbiol Biotechnol 9:521–528. doi: 10.1007/BF00386287 CrossRefPubMedGoogle Scholar
  51. Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif- mutant strains. Mol Plant Microbe In 14:358–366. doi: 10.1094/MPMI.2001.14.3.358 CrossRefGoogle Scholar
  52. Shishido M, Massicotte HB, Chanway CP (1996) Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann Bot 77:433–441. doi: 10.1006/anbo.1996.0053 CrossRefGoogle Scholar
  53. Singh HP, Singh TA (1993) The interaction of rockphosphate, Bradyrhizobium, vesicular-arbuscular mycorrhizae and phosphate solubilizing microbes on soybean grown in a sub-Himalayan mollisol. Mycorrhiza 4:37–43. doi: 10.1007/BF00203249 CrossRefGoogle Scholar
  54. Sun K, Liu J, Gao Y, Jin L, Gu Y, Wang W (2014) Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp. Sci Rep 4:5462. doi:  10.1038/srep05462
  55. Talboys PJ, Owen DW, Healey JR, Withers PJ, Jones DL (2014) Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum. BMC Plant Biol 14:51. doi: 10.1186/1471-2229-14-51 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. doi: 10.1038/nature01014 CrossRefPubMedGoogle Scholar
  57. Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300. doi: 10.1128/AEM.71.11.7292-7300.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Timonen S (1995) Avoiding autofluorescence problems: time-resolved fluorescence microscopy with plant and fungal cells in ectomycorrhiza. Mycorrhiza 5:455–458. doi: 10.1007/s005720050097 CrossRefGoogle Scholar
  59. Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen-balance estimates. Soil Sci Soc Am J 56:105–114. doi: 10.2136/sssaj1992.03615995005600010017x CrossRefGoogle Scholar
  60. von der Weid I, Paiva E, Nóbrega A, Dirk van Elsas J, Seldin L (2000) Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Res Microbiol 151:369–381. doi: 10.1016/S0923-2508(00)00160-1 CrossRefPubMedGoogle Scholar
  61. Weyens N, Boulet J, Adriaensen D et al (2012) Contrasting colonization and plant growth promoting capacity between wild type and a gfp derative of the endophyte Pseudomonas putida W619 in hybrid poplar. Plant Soil 356:217–230. doi: 10.1007/s11104-011-0831-x CrossRefGoogle Scholar
  62. Zhang F, Shen J, Zhang J, Zuo Y, Li L, Chen X (2010) Chapter one—rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. Adv Agron 107:1–32. doi: 10.1016/S0065-2113(10)07001-X CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations