Advertisement

Biology and Fertility of Soils

, Volume 51, Issue 6, pp 749–755 | Cite as

Bio-inoculation of yerba mate seedlings (Ilex paraguariensis St. Hill.) with native plant growth-promoting rhizobacteria: a sustainable alternative to improve crop yield

  • V. M. Bergottini
  • M. B. Otegui
  • D. A. Sosa
  • P. D. Zapata
  • M. Mulot
  • M. Rebord
  • J. Zopfi
  • F. Wiss
  • B. Benrey
  • Pilar JunierEmail author
Short Communication

Abstract

In this study, the role of native plant growth-promoting rhizobacteria (PGPR) as bio-inoculants was assessed as an alternative to ameliorate Ilex paraguariensis St. Hill. growth in nursery comparing poorer (soil) versus richer (compost) substrates. Twelve rhizospheric strains isolated from yerba mate plantations were evaluated in vitro for their potential as PGPRs. Three isolates, identified as Kosakonia radicincitans YD4, Rhizobium pusense YP3, and Pseudomonas putida YP2, were selected on the basis of their N2 fixation activity, IAA-like compound and siderophore production, and phosphate solubilization. A highly significant positive effect of bio-inoculation with the native isolates was observed in 5-month-old seedlings cultivated in soil. The highest increase was observed in seedlings inoculated with K. radicincitans YD4 with an increase of 183 % in the dry shoot weight and a 30 % increase in shoot N content. In contrast, in compost, no increment in the dry weight was observed; however, an increase in content in some macronutrients in shoots was observed. Remarkably, when plant biomass was compared between soil and compost, seedlings inoculated with K. radicincitans YD4 in soil produced the highest yields, even though higher yields could be expected in compost due to the richness of this substrate. In conclusion, bio-inoculation of yerba mate seedlings with native PGPR increases the yield of this crop in nursery and could represent a promising sustainable strategy to improve yerba mate growth in low-fertility soils.

Keywords

Ilex paraguariensis St. Hill. (yerba mate) PGPR Bio-inoculants Kosakonia radicincitans 

Notes

Acknowledgments

This research was funded by the University of Neuchâtel and by PRASY, Instituto Nacional de la Yerba Mate (INYM). We are grateful to the Swiss Government for the Scholarship for Foreign Students and the Comité Ejecutivo de Desarrollo e Innovación Tecnológica (CEDIT), Provincia de Misiones. We thank the “Fonds des Donations” of the University of Neuchâtel for funding part of the fieldwork. We also thank the Alberto Roth Foundation where the inoculation assay was performed, Barbara Iwasita for the chemical analyses, María Victoria Salomon for providing the strain A. brasilense 245, and Sonia Tarnawski and Margarita Laczeski for their valuable help.

Supplementary material

374_2015_1012_MOESM1_ESM.docx (24 kb)
Supplementary Table 1 (DOCX 24 kb)
374_2015_1012_MOESM2_ESM.docx (24 kb)
Supplementary Table 2 (DOCX 24 kb)

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi: 10.1093/nar/25.17.3389 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Andrade ACS, Queiroz MH, Hermes RAL, Oliveira VL (2000) Mycorrhizal status of some plants of the Araucaria forest and the Atlantic rainforest in Santa Catarina, Brazil. Mycorrhiza 10:131–136. doi: 10.1007/s005720000070 CrossRefGoogle Scholar
  3. Bashan Y, Holguin G, Luz E (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 577:521–577. doi: 10.1139/W04-035 CrossRefGoogle Scholar
  4. Bashan Y, Kamnev AA, de-Bashan LE (2013a) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils 49:465–479. doi: 10.1007/s00374-012-0737-7 CrossRefGoogle Scholar
  5. Bashan Y, Kamnev A, de-Bashan L (2013b) A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biol Fertil Soils 49:1–2. doi: 10.1007/s00374-012-0756-4 CrossRefGoogle Scholar
  6. Bergottini V, Filippidou S, Junier T, Johnson S, Chain P, Otegui M, Zapata P, Junier P (2015) Genome sequence of Kosakonia radicincitans strain YD4, a plant growth-promoting rhizobacteria isolated from yerba mate (Ilex paraguariensis St. Hill.). Genome AnnouncGoogle Scholar
  7. Bertrand A, Prévost D, Bigras FJ, Castonguay Y (2007) Elevated atmospheric CO2 and strain of rhizobium alter freezing tolerance and cold-induced molecular changes in alfalfa (Medicago sativa). Ann Bot 99:275–284. doi: 10.1093/aob/mcl254 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P (2013) Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 36:309–319. doi: 10.1016/j.syapm.2013.03.005 PubMedCrossRefGoogle Scholar
  9. Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538PubMedCentralPubMedGoogle Scholar
  10. Brock A, Berger B, Mewis I, Ruppel S (2013) Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana. Microb Ecol 65:661–670. doi: 10.1007/s00248-012-0146-3 PubMedCrossRefGoogle Scholar
  11. Castric KF, Castric PA (1983) Method for rapid detection of cyanogenic bacteria. Appl Environ Microbiol 45:701–702PubMedCentralPubMedGoogle Scholar
  12. Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680CrossRefGoogle Scholar
  13. Chanway CP, Holl FB (1991) Biomass increase and associative nitrogen fixation of mycorrhizal Pinus contorta seedlings inoculated with a plant growth promoting Bacillus strain. Can J Bot 69:507–511CrossRefGoogle Scholar
  14. Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM (2010) Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils 46:727–738. doi: 10.1007/s00374-010-0480 CrossRefGoogle Scholar
  15. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. doi: 10.1128/AEM. 71.9.4951-4959.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Dobbelaere S, Croonenborghs A, Thys A (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164CrossRefGoogle Scholar
  17. Döbereiner J (1980) Forage grasses and grain crops. In: Bergersen F (ed) Methods for evaluating biological nitrogen fixation, New York J. pp 535–555Google Scholar
  18. Eibl B, Fernandez RA, Kozarik JC, Lupi A, Montagnini F, Nozzi D (2000) Agroforestry systems with Ilex paraguariensis (American holly or yerba mate) and native timber trees on small farms in Misiones, Argentina. Agrofor Syst 48:1–8. doi: 10.1023/A:1006299920574 CrossRefGoogle Scholar
  19. Fages J, Arsac JF (1991) Sunflower inoculation with Azospirillum and other plant growth promoting rhizobacteria. Plant Soil 137:87–90. doi: 10.1007/BF02187437 CrossRefGoogle Scholar
  20. Fernandez R, Montagnini F, Hamilton H (1997) The influence of native tree species on soil chemistry in a subtropical humid forest region in Argentina. J Trop For Sci 10:188–196Google Scholar
  21. Fox S, O’Hara G, Bräu L (2011) Enhanced nodulation and symbiotic effectiveness of Medicago truncatula when co-inoculated with Pseudomonas fluorescens WSM3457 and Ensifer (Sinorhizobium) medicae WSM419. Plant Soil 348:245–254. doi: 10.1007/s11104-011-0959-8 CrossRefGoogle Scholar
  22. Freitas JR, Germida JJ (1990) Plant growth promoting rhizobacteria for winter wheat. Can J Microbiol 36:265–272. doi: 10.1139/m90-046
  23. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:1–15. doi: 10.6064/2012/963401 CrossRefGoogle Scholar
  24. Heck CI, De Mejia EG (2007) Yerba Mate Tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. J Food Sci 72:R138–R151. doi: 10.1111/j.1750-3841.2007.00535 PubMedCrossRefGoogle Scholar
  25. Ilany T, Ashton M, Montagnini F, Martinez C (2010) Using agroforestry to improve soil fertility: effects of intercropping on Ilex paraguariensis (yerba mate) plantations with Araucaria angustifolia. Agrofor Syst 80:399–409. doi: 10.1007/s10457-010-9317-8 CrossRefGoogle Scholar
  26. James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209. doi: 10.1016/S0378-4290(99)00087-8 CrossRefGoogle Scholar
  27. Kertesz MA, Mirleau P (2004) The role of soil microbes in plant sulphur nutrition. J Exp Bot 55:1939–1945. doi: 10.1093/Jxb/Erh176 PubMedCrossRefGoogle Scholar
  28. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant-growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886. doi: 10.1038/286885a0 CrossRefGoogle Scholar
  29. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44. doi: 10.1016/0167-7799(89)90057-7 CrossRefGoogle Scholar
  30. Liesack W, Weyland H, Stackebrandt E (1991) Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria. Microb Ecol 21:191–198. doi: 10.1007/Bf02539153 PubMedCrossRefGoogle Scholar
  31. Mader P, Kaiser F, Adholeya A, Sing R, Uppal H, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A, Johri B, Fried P (2011) Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biol Biochem 43:609–619. doi: 10.1016/j.soilbio.2010.11.031 CrossRefGoogle Scholar
  32. Madhaiyan M, Poonguzhali S, Lee JS, Saravanan VS, Lee KC, Santhanakrishnan P (2010) Enterobacter arachidis sp. nov., a plant-growth-promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut. Int J Syst Evol Microbiol 60:1559–1564. doi: 10.1099/ijs. 0.013664-0 PubMedCrossRefGoogle Scholar
  33. Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47:110–117. doi: 10.1139/cjm-47-2-110 PubMedCrossRefGoogle Scholar
  34. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi: 10.1016/S0003-2670(00)88444-5 CrossRefGoogle Scholar
  35. Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic-relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel-electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172. doi: 10.1007/Bf02529967 PubMedCrossRefGoogle Scholar
  36. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270. doi: 10.1111/j.1574-6968.1999.tb13383 PubMedCrossRefGoogle Scholar
  37. Ovreas L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373PubMedCentralPubMedGoogle Scholar
  38. Peng G, Zhang W, Luo H, Xie H, Lai W, Tan Z (2009) Enterobacter oryzae sp. nov., a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia. Int J Syst Evol Microbiol 59:1650–1655. doi: 10.1099/ijs. 0.005967-0 PubMedCrossRefGoogle Scholar
  39. Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316. doi: 10.1038/nchembio.164 PubMedCrossRefGoogle Scholar
  40. Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat JF, Lemanceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv Agron 99:183–225. doi: 10.1016/S0065-2113(08)00404-5 CrossRefGoogle Scholar
  41. Rodrigues EP, Rodrigues LS, de Oliveira ALM, Baldani VLD, Teixeira KRD, Urquiaga S (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302:249–261. doi: 10.1007/s11104-007-9476-1 CrossRefGoogle Scholar
  42. Scholz-Seidel C, Ruppel S (1992) Nitrogenase- and phytohormone activities of Pantoea agglomerans in culture and their reflection in combination with wheat plants. Zentralbl Mikrobiol 147:319–328. doi: 10.1016/S0232-4393(11)80395-1 Google Scholar
  43. Schwyn B, Neilands JB (1987) Universal chemical-assay for the detection and determination of siderophores. Anal Biochem 160:47–56. doi: 10.1016/0003-2697(87)90612-9 PubMedCrossRefGoogle Scholar
  44. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587. doi: 10.1186/2193-1801-2-587 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Sing R, Adholeya A (2003) Interactions between arbuscular mycorrhizal fungi and plant-growth promoting rhizobacteria. Mycorrhiza News 15:16–17Google Scholar
  46. Smyth EM, McCarthy J, Nevin R, Khan MR, Dow JM, O’ Gara F, Doohan FM (2011) In vitro analyses are not reliable predictors of the plant growth promotion capability of bacteria; a Pseudomonas fluorescens strain that promotes the growth and yield of wheat. J Appl Microbiol 111:683–692. doi: 10.1111/j.1365-2672.2011.05079 PubMedCrossRefGoogle Scholar
  47. Stewart WDP, Fitzgera G, Burris RH (1967) In situ studies on N2 fixation using acetylene reduction technique. Proc Natl Acad Sci U S A 58:2071–2078. doi: 10.1073/pnas.58.5.2071 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Tarnawski S (2008) Rhizosphere bacterial communities associated with Lolium perenne. University of Neuchâtel, PhD thesisGoogle Scholar
  49. Tarnawski S, Hamelin J, Jossi M, Aragno M, Fromin N (2006) Phenotypic structure of Pseudomonas populations is altered under elevated pCO2 in the rhizosphere of perennial grasses. Soil Biol Biochem 38:1193–1201. doi: 10.1016/j.soilbio.2005.10.003 CrossRefGoogle Scholar
  50. Witzel K, Gwinn-Giglio M, Nadendla S, Shefchek K, Ruppel S (2012) Genome sequence of Enterobacter radicincitans DSM16656T, a plant growth-promoting endophyte. J Bacteriol 194:5469. doi: 10.1128/JB.01193-12 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • V. M. Bergottini
    • 1
  • M. B. Otegui
    • 2
  • D. A. Sosa
    • 3
  • P. D. Zapata
    • 2
  • M. Mulot
    • 4
  • M. Rebord
    • 1
  • J. Zopfi
    • 5
  • F. Wiss
    • 6
  • B. Benrey
    • 7
  • Pilar Junier
    • 1
    Email author
  1. 1.Laboratory of MicrobiologyUniversity of NeuchâtelNeuchâtelSwitzerland
  2. 2.Instituto de Biotecnología MisionesUniversidad Nacional de MisionesPosadasArgentina
  3. 3.Instituto Nacional de Tecnología AgropecuariaEEA Cerro AzulCerro AzulArgentina
  4. 4.Laboratory of Soil BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
  5. 5.Department of Environmental SciencesUniversity of BaselBaselSwitzerland
  6. 6.Instituto Nacional de Tecnología AgropecuariaEEA MontecarloMontecarloArgentina
  7. 7.Laboratory of Evolutionary EntomologyUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations