Biology and Fertility of Soils

, Volume 51, Issue 5, pp 637–644 | Cite as

Impacts of eucalypt plantation management on soil faunal communities and nutrient bioavailability: trading function for dependence?

  • Tiffany J. Aslam
  • Tim G. Benton
  • Uffe N. Nielsen
  • Scott N. Johnson
Short Communication


Short-rotation forestry systems provide a range of ecosystem goods and services, yet the effects of intensive management on soil invertebrate community composition and ecosystem functioning are relatively unknown. Using an established eucalypt plantation study system, we investigated the effects of irrigation and inorganic fertilisation, and a dual fertilisation and irrigation treatment, on soil invertebrate abundance and community composition. Additionally, plant root simulator probes were used to estimate the effect of these interactions on nutrient bioavailability as a proxy for ecosystem functioning. Fertilisation reduced soil mite and nematode abundance when applied with irrigation, likely due to the increased solubilisation of inorganic fertilisers in water-limited soils. However, differences in soil invertebrate abundances were not associated with changes in plant nutrient bioavailability. Our findings suggest that high input systems can maintain productivity at the expense of shifts in the soil faunal community, which creates a “lock-in”, whereby there is a continuous need for artificial inputs in order to maintain productivity. Reliance on artificial inputs may reduce the soil’s intrinsic capacity to maintain natural ecosystem function in the longer term and should therefore be considered in plantation planning and management.


Fertilisation Microarthropods Nematodes Short-rotation forestry 



The authors are grateful to Gillian Powell and Kaushal Tewari for laboratory assistance. Burhan Amiji and Craig Barton are thanked for managing the plots. We also thank four anonymous reviewers whose suggestions helped to improve and clarify earlier drafts of the manuscript. The site was established with support from the Australian Greenhouse Office grant 0506/0085 and subsequently by the Commonwealth Department of Climate Change, with additional funding from the NSW Department of Environment and Climate Change (grant T07/CAG/16). This project was funded by a research exchange grant from the Hawkesbury Institute for the Environment, University of Western Sydney, Australia (S.N.J., U.N.N., T.J.A.) and a Natural Environment Research Council Doctoral Training Grant (NE/J50001X/1; T.J.A.).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Almeida AC, Landsberg JJ, Sands PJ, Ambrogi MS, Fonseca S, Barddal SM, Bertolucci FL (2004) Needs and opportunities for using a process-based productivity model as a practical tool in Eucalyptus plantations. For Ecol Manag 193:167–177. doi: 10.1016/j.foreco.2004.01.044 CrossRefGoogle Scholar
  2. Bardgett RD, Chan KF (1999) Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biol Biochem 31:1007–1014. doi: 10.1016/S0038-0717(99)00014-0 CrossRefGoogle Scholar
  3. Bardgett R, Hopkins D, Usher M, Society BE (2005) Biological diversity and function in soils. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Barton CVM, Ellsworth DS, Medlyn BE, Duursma RA, Tissue DT, Adams MA, Eamus D, Conroy JP, McMurtrie RE, Parsby J, Linder S (2010) Whole-tree chambers for elevated atmospheric CO2 experimentation and tree scale flux measurements in south-eastern Australia: the Hawkesbury Forest Experiment. Agr Forest Meteorol 150:941–951. doi: 10.1016/j.agrformet.2010.03.001 CrossRefGoogle Scholar
  5. Belay A, Claassens A, Wehner F (2002) Effect of direct nitrogen and potassium and residual phosphorus fertilizers on soil chemical properties, microbial components and maize yield under long-term crop rotation. Biol Fertil Soils 35:420–427. doi: 10.1007/s00374-002-0489-x CrossRefGoogle Scholar
  6. Bengtson P, Basiliko N, Prescott C, Grayston S (2007) Spatial dependency of soil nutrient availability and microbial properties in a mixed forest of Tsuga heterophylla and Pseudotsuga menziesii, in coastal British Columbia, Canada. Soil Biol Biochem 39:2429–2435. doi: 10.1016/j.soilbio.2007.04.010 CrossRefGoogle Scholar
  7. Birkhofer K, Bezemer TM, Bloem J, Bonkowski M, Christensen S, Dubois D, Ekelund F, Flieβbach A, Gunst L, Hedlund K, Mäder P, Mikola J, Robin C, Setälä H, Tatin-Froux F, Van der Putten WH, Scheu S (2008) Long-term organic farming fosters below and aboveground biota: implications for soil quality, biological control and productivity. Soil Biol Biochem 40:2297–2308. doi: 10.1016/j.soilbio.2008.05.007 CrossRefGoogle Scholar
  8. Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004) Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. For Ecol Manag 196:43–56. doi: 10.1016/j.foreco.2004.03.011 CrossRefGoogle Scholar
  9. Brussaard L, Behan-Pelletier VM, Bignell DE, Brown VK, Didden W, Folgarait P, Fragoso C, Wall D, Gupta VVSR, Hattori T, Hawksworth DL, Klopatek C, Lavelle P, Malloch DW, Rusek J, Söderström B, Tiedje JM, Virginia RA (1997) Biodiversity and ecosystem functioning in soil. Ambio 26:563–570Google Scholar
  10. Bünemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms—a review. Soil Res 44:379–406. doi: 10.1071/SR05125 CrossRefGoogle Scholar
  11. Cannell MGR (2003) Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass Bioenergy 24:97–116. doi: 10.1016/S0961-9534(02)00103-4 CrossRefGoogle Scholar
  12. Chander K, Goyal S, Nandal DP, Kapoor KK (1998) Soil organic matter, microbial biomass and enzyme activities in a tropical agroforestry system. Biol Fertil Soils 27:168–172. doi: 10.1007/s003740050416 CrossRefGoogle Scholar
  13. Collins M, Knutti R, Arblaster JM, Dufresne J-L, Thierry F, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, pp 1029–1136Google Scholar
  14. da Silva Moço MK, da Gama-Rodrigues EF, da Gama-Rodrigues AC, Machado RCR, Baligar VC (2009) Soil and litter fauna of cacao agroforestry systems in Bahia, Brazil. Agrofor Syst 76:127–138. doi: 10.1007/s10457-008-9178-6 CrossRefGoogle Scholar
  15. de Vries FT, Hoffland E, van Eekeren N, Brussaard L, Bloem J (2006) Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol Biochem 38:2092–2103. doi: 10.1016/j.soilbio.2006.01.008 CrossRefGoogle Scholar
  16. DeForest JL, Zak DR, Pregitzer KS, Burton AJ (2004) Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Sci Soc Am J 68:132–138. doi: 10.2136/sssaj2004.1320 CrossRefGoogle Scholar
  17. Demoling F, Nilsson LO, Bååth E (2008) Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biol Biochem 40:370–379. doi: 10.1016/j.soilbio.2007.08.019 CrossRefGoogle Scholar
  18. Frampton GK, Van den Brink PJ, Gould PJL (2000) Effects of spring precipitation on a temperate arable collembolan community analysed using Principal Response Curves. Appl Soil Ecol 14:231–248. doi: 10.1016/S0929-1393(00)00051-2 CrossRefGoogle Scholar
  19. Giller P (1996) The diversity of soil communities, the ‘poor man's tropical rainforest’. Biodivers Conserv 5:135–168. doi: 10.1007/bf00055827 CrossRefGoogle Scholar
  20. Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549. doi: 10.1002/jpln.200420516 CrossRefGoogle Scholar
  21. Jacobs DF, Timmer VR (2005) Fertilizer-induced changes in rhizosphere electrical conductivity: relation to forest tree seedling root system growth and function. New For 30:147–166. doi: 10.1007/s11056-005-6572-z CrossRefGoogle Scholar
  22. Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10. doi: 10.1007/s10457-009-9229-7 CrossRefGoogle Scholar
  23. Lee KH, Jose S (2003) Soil respiration and microbial biomass in a pecan—cotton alley cropping system in Southern USA. Agrofor Syst 58:45–54. doi: 10.1023/a:1025404019211 CrossRefGoogle Scholar
  24. Lindberg N, Bengtsson J (2006) Recovery of forest soil fauna diversity and composition after repeated summer droughts. Oikos 114:494–506. doi: 10.1111/j.2006.0030-1299.14396.x CrossRefGoogle Scholar
  25. Lindberg N, Persson T (2004) Effects of long-term nutrient fertilisation and irrigation on the microarthropod community in a boreal Norway spruce stand. For Ecol Manag 188:125–135. doi: 10.1016/j.foreco.2003.07.012 CrossRefGoogle Scholar
  26. Lindberg N, Bengtsson J, Persson T (2002) Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. J Appl Ecol 39:924–936. doi: 10.1046/j.1365-2664.2002.00769.x CrossRefGoogle Scholar
  27. Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461. doi: 10.1016/S0038-0717(02)00297-3 CrossRefGoogle Scholar
  28. McNeely J, Schroth G (2006) Agroforestry and biodiversity conservation—traditional practices, present dynamics, and lessons for the future. Biodivers Conserv 15:549–554. doi: 10.1007/s10531-005-2087-3 CrossRefGoogle Scholar
  29. Moursi AA (1970) Toxicity of ammonia on soil arthropods (Acarina and Collembola). Bull Entomol Soc Egypt Econ Ser 4:241–244Google Scholar
  30. Peacock AD, Mullen MD, Ringelberg DB, Tyler DD, Hedrick DB, Gale PM, White DC (2001) Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biol Biochem 33:1011–1019. doi: 10.1016/S0038-0717(01)00004-9 CrossRefGoogle Scholar
  31. Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Phil Trans R Soc B Biol 365:2959–2971. doi: 10.1098/rstb.2010.0143 CrossRefGoogle Scholar
  32. Ramirez KS, Craine JM, Fierer N (2010) Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied. Soil Biol Biochem 42:2336–2338. doi: 10.1016/j.soilbio.2010.08.032 CrossRefGoogle Scholar
  33. Schroeder P (1992) Carbon storage potential of short rotation tropical tree plantations. For Ecol Manag 50:31–41. doi: 10.1016/0378-1127(92)90312-W CrossRefGoogle Scholar
  34. Silber A, Xu G, Levkovitch I, Soriano S, Bilu A, Wallach R (2003) High fertigation frequency: the effects on uptake of nutrients, water and plant growth. Plant Soil 253:467–477. doi: 10.1023/a:1024857814743 CrossRefGoogle Scholar
  35. Sileshi G, Mafongoya PL (2006) Variation in macrofaunal communities under contrasting land use systems in eastern Zambia. Appl Soil Ecol 33:49–60. doi: 10.1016/j.apsoil.2005.09.003 CrossRefGoogle Scholar
  36. Smith P, Gregory PJ, Van Vurren D, ObersteinerM HP, Rounsevell M, Woods J, Stehfest E, Ballarby J (2010) Competition for land. Phil Trans R Soc B Biol 365:2941–2957. doi: 10.1098/rstb.2010.0127 CrossRefGoogle Scholar
  37. Swinton SM, Lupi F, Robertson GP, Hamilton SK (2007) Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecol Econ 64:245–252. doi: 10.1016/j.ecolecon.2007.09.020 CrossRefGoogle Scholar
  38. Tabaglio V, Gavazzi C, Menta C (2009) Physico-chemical indicators and microarthropod communities as influenced by no-till, conventional tillage and nitrogen fertilisation after four years of continuous maize. Soil Tillage Res 105:135–142. doi: 10.1016/j.still.2009.06.006 CrossRefGoogle Scholar
  39. Thiele-Bruhn S, Bloem J, de Vries FT, Kalbitz K, Wagg C (2012) Linking soil biodiversity and agricultural soil management. Curr Opin Environ Sustain 4:523–528. doi: 10.1016/j.cosust.2012.06.004 CrossRefGoogle Scholar
  40. Tsiafouli MA, Kallimanis AS, Katana E, Stamou GP, Sgardelis SP (2005) Responses of soil microarthropods to experimental short-term manipulations of soil moisture. Appl Soil Ecol 29:17–26. doi: 10.1016/j.apsoil.2004.10.002 CrossRefGoogle Scholar
  41. Twinn DC (1974) Nematodes. In: Dickinson CH, Pugh GJF (eds) Biology of plant litter decomposition. Academic Press, London, pp 421–465CrossRefGoogle Scholar
  42. Wallenstein MD, McNulty S, Fernandez IJ, Boggs J, Schlesinger WH (2006) Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. For Ecol Manag 222:459–468. doi: 10.1016/j.foreco.2005.11.002 CrossRefGoogle Scholar
  43. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. doi: 10.1126/science.1094875 PubMedCrossRefGoogle Scholar
  44. Wei C, Zheng H, Li Q, Lü X, Yu Q, Zhang H, Chen Q, He N, Kardol P, Liang W, Han X (2012) Nitrogen addition regulates soil nematode community composition through ammonium suppression. PLoS One 7:e43384. doi: 10.1371/journal.pone.0043384 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Weih M (2004) Intensive short rotation forestry in boreal climates: present and future perspectives. Can J For Res 34:1369–1378CrossRefGoogle Scholar
  46. Wright DJ (1975) Elimination of nitrogenous compounds by Panagrellus redivivus, Goodey, 1945 (Nematoda: Cephalobidae). Comp Biochem Physiol B Comp Biochem 52:247–253. doi: 10.1016/0305-0491(75)90060-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tiffany J. Aslam
    • 1
  • Tim G. Benton
    • 1
  • Uffe N. Nielsen
    • 2
    • 3
  • Scott N. Johnson
    • 2
  1. 1.School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
  2. 2.Hawkesbury Institute for the EnvironmentUniversity of Western SydneyPenrithAustralia
  3. 3.School of Science and HealthUniversity of Western SydneyPenrithAustralia

Personalised recommendations