Advertisement

Biology and Fertility of Soils

, Volume 51, Issue 3, pp 391–402 | Cite as

Plant genotype and nitrogen fertilization effects on abundance and diversity of diazotrophic bacteria associated with maize (Zea mays L.)

  • Andrea Rodríguez-Blanco
  • Margarita Sicardi
  • Lillian Frioni
Original Paper

Abstract

This research has investigated the effect of two genotypes of maize (Zea mays L.) on the number and diversity of diazotrophic bacteria under different N-fertilization rates. Cultivars NK940 and PAU871 were grown in soil:sand with 0, 40, and 80 kg N ha−1 added as NH4NO3 under controlled conditions for 60 days. The number of diazotrophic bacteria of rhizosphere (S), disinfected roots (R), and stems (T) was determined by most probable number (MPN) method. Diazotrophic bacteria were isolated by N-free media, confirmed by amplification of nifH gene fragments, characterized by amplified 16S rDNA restriction analysis (ARDRA) and (GTG)5 fingerprinting, and identified by partial 16S ribosomal DNA (rDNA) sequence analysis. The diversity of the diazotrophic community from S and R was determined by Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis considering the nifH gene. Maize genotype had a marked effect on the number and diversity of endophytic communities, the NK940 community being more abundant and diverse than that of PAU871. Additionally, N-fertilization increased the number and diversity of diazotrophs in endophytic communities but not in rhizosphere samples. One hundred and six diazotrophs were isolated from S, R, and T samples. Pseudomonas and Enterobacter were the dominant and ubiquitous genera isolated and detected by culture-independent method. T-RFLP showed that the N-fixing populations of the rhizosphere of both cultivars were more diverse than those of inside roots. Principal component analysis (PCA) separated the samples by cultivar and demonstrated a more marked effect of N-fertilization on the NK940 diazotrophic community than on PAU871. These results support the hypothesis that plant genotype and fertilization conditions should be taken into account when searching for N-fixer inocula.

Keywords

Diazotrophs Diversity Maize cultivar N-fertilization T-RFLP 

Notes

Acknowledgments

This work was partially supported by PEDECIBA (Programa de Desarrollo de Ciencias Básicas), UdelaR, Uruguay. Andrea Rodríguez-Blanco thanks the Agencia Nacional de Investigación e Innovación (ANII) for awarding a Ph. D. grant.

References

  1. Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedCentralPubMedGoogle Scholar
  2. Anand R, Chanway C (2013) N2-fixation and growth promotion in cedar colonized by an endophytic strain of Paenibacillus polymyxa. Biol Fertil Soils 49:235–239CrossRefGoogle Scholar
  3. Arruda L, Beneduzi A, Martins A, Lisboa B, Lopes C, Bertolo F, Passaglia LMP, Vargas LK (2013) Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant growth. Appl Soil Ecol 63:15–22CrossRefGoogle Scholar
  4. Baldani JI, Baldani VL (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Cienc 77:549–579CrossRefPubMedGoogle Scholar
  5. Baldani JI, Caruso L, Baldani VLD, Goi SR, Döbereiner DJ (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922CrossRefGoogle Scholar
  6. Baldani VLD, Baldani JI, Olivares FL, Döbereiner J (1992) Identification and ecology of Herbaspirillum seropedicae and the closely related Pseudomonas rubrisubalbicans. Symbiosis 13:65–73Google Scholar
  7. Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577CrossRefPubMedGoogle Scholar
  8. Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209CrossRefPubMedGoogle Scholar
  9. Bohlool BB, Ladha JK, Garrity T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141:1–11CrossRefGoogle Scholar
  10. Cavalcante VA, Döbereiner J (1988) A new acid-tolerant bacterium associated with sugarcane. Plant Soil 108:23–31CrossRefGoogle Scholar
  11. Chelius MK, Triplett EW (2000) Diazotrophic endophyte associated with maize. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Norfolk, UK, pp 779–792Google Scholar
  12. Chen G, Hoglong Z, Zhang Y (2003) Soil microbial activities and carbon and nitrogen fixation. Res Microbiol 157:393–398CrossRefGoogle Scholar
  13. Choudhury SP, Schmid M, Hartmann A, Tripathi AK (2007) Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus, a perennial grass of Thar desert. India Microb Ecol 54:82–90CrossRefGoogle Scholar
  14. Coelho MRR, Marriel I, Jenkins S, Lanyon C, Seldin L, O’Donnell A (2009) Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer. Appl Soil Ecol 42:48–53CrossRefGoogle Scholar
  15. da Costa PB, Beneduzi A, de Souza R, Schoenfeld R, Vargas KL, Passaglia LMP (2013) The effects of different fertilization conditions on bacterial plant growth promoting traits: guidelines for directed bacterial prospection and testing. Plant Soil 368:267–280CrossRefGoogle Scholar
  16. de Oliveira ALM, de Canuto EL, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32CrossRefGoogle Scholar
  17. Döbereiner J (1988) Isolation and identification of root associated diazotrophs. Plant Soil 110:207–212CrossRefGoogle Scholar
  18. Döbereiner J (1995) Isolation and identification of aerobic nitrogen-fixing bacteria from soil and plants. In Alef K, Nannipieri P (Eds). Methods in Applied Soil Microbiology and Biochemistry; London Academia Press pp. 134–141Google Scholar
  19. dos Reis FB, Jr RVM, Urquiaga S, Döbereiner J (2000) Influence of nitrogen fertilization on the population of diazotrophic Herbaspirillum spp. and Gluconacetobacter diazotrophicus in sugar cane (Saccharum spp.). Plant Soil 219:153–159CrossRefGoogle Scholar
  20. Dunbar J, Lawrence O, Kuske C (2000) Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl Environ Microbiol 66:2943–2950CrossRefPubMedCentralPubMedGoogle Scholar
  21. El-Komy HMA, Moharram TMM, Safwat MSA (1998) Effect of Azospirillum inoculation on growth and N2 fixation of maize subjected to different levels of FYM using 15N-dilution method. In: Malik KA, Mirza MS, Ladha JK (eds) Nitrogen Fixation with Non-Legumes. Kluwer Academic Publishers, Dordrecht, pp 49–59CrossRefGoogle Scholar
  22. Estrada P, Mavingui P, Cournoyer B, Fontaine F, Balandreau J, Caballero-Mellado J (2005) A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Int J Syst Evol Microbiol 55:1233–1237CrossRefGoogle Scholar
  23. Fuentes-Ramirez LE, Caballero-Mellado J, Sepúlveda J, Martinez-Romero E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N fertilization. FEMS Microbiol Ecol 29:117–127CrossRefGoogle Scholar
  24. García de Salamone I, Döbereiner J (1996) Maize genotype effects on the response to Azospirillum inoculation. Biol Fert Soils 21:193–196CrossRefGoogle Scholar
  25. Garcia de Salamone I, Döbereiner J, Urquiaga S, Boddey RM (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol Fert Soils 23:249–256CrossRefGoogle Scholar
  26. García de Salamone I, Funes JM, Di Salvo LP, Escobar-Ortega JS, D’Auria F, Ferrando L, Fernandez-Scavino A (2012) Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: impact of plant genotypes on rhizosphere microbial communities and field crop production. Appl Soil Ecol 61:196–204CrossRefGoogle Scholar
  27. Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt M, Stephan MP, Teixeira KRS, Dobereiner J, De Ley J (1989) Acetobacter diazotrophicus sp. nov., a nitrogen fixing acetic acid bacterium associated with sugarcane. Int J Syst Bacteriol 39:361–364CrossRefGoogle Scholar
  28. Gopalakrishnan S, Humayun P, Kiran BK, Kannan IGK, Vidya MS, Deepthi K, Rupela O (2011) Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J Microbiol Biotechnol 27:1313–1321CrossRefPubMedGoogle Scholar
  29. Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol 154:131–146CrossRefGoogle Scholar
  30. Herrera-Cervera JA, Caballero-Mellado J, Laguerre G, Hans-Volker T, Requena N, Amarger N, Martinez-Romero E, Olivares J, Sanjuan J (1999) At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soil. FEMS Microbiol Ecol 30:87–97CrossRefGoogle Scholar
  31. Hungria M, Campo RI, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425CrossRefGoogle Scholar
  32. Islam R, Trivedi P, Madhaiyan M, Seshadri S, Lee G, Yang J, Kim Y, Kim M, Han G, Singh Chauhan P, Sa T (2010) Isolation, enumeration, and characterization of diazotrophic bacteria from paddy soil sample under long-term fertilizer management experiment. Biol Fertil Soils 46:261–269CrossRefGoogle Scholar
  33. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906CrossRefPubMedGoogle Scholar
  34. Jha B, Thakur M, Gontia I, Albrecht V, Stoffels M, Schmid M, Hartmann A (2009) Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars. European J Soil Biol 45:62–72CrossRefGoogle Scholar
  35. Jiménez-Salgado T, Fuentes-Ramírez LE, Tapia-Hernández A, Mascarua-Esparza MA, Martínez-Romero E, Caballero-Mellado J (1997) Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Appl Environ Microbiol 63:3676–3683PubMedCentralPubMedGoogle Scholar
  36. Josey DP, Beynon JL, Johnston AWB, Beringer JE (1979) Strain identification in Rhizobium using intrinsic antibiotic resistance. J Appl Bacteriol 46:343–50CrossRefGoogle Scholar
  37. Juraeva D, George E, Davranov K, Ruppel S (2006) Detection and quantification of the nifH gene in shoot and root of cucumber plants. Can J Microbiol 52:731–739CrossRefPubMedGoogle Scholar
  38. Kennedy IR, Choudhury ATMA, Kecskés ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems; can their potential for plant growth promotion be better explained? Soil Biol Biochem 36:1229–1244CrossRefGoogle Scholar
  39. Kennedy N, Egger KN (2010) Impact of wildfire intensity and logging on fungal and nitrogen-cycling bacterial communities in British Columbia forest soils. Forest Ecol Manag 260:787–794CrossRefGoogle Scholar
  40. Kim Y, Wegner CE, Liesack W (2014) Soil metatranscriptomic. In: Nannipieri P, Renella G, PIetramellara G (eds) Omics in soil science. Caster Academic Press, NorfolkGoogle Scholar
  41. Knauth S, Hurek T, Brar D, Reinhold-Hurek B (2005) Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ Microbiol 7:1725–1733CrossRefPubMedGoogle Scholar
  42. Kolb W, Martin P (1988) Influence of nitrogen on the number of N2-fixing and total bacteria in the rhizosphere. Soil Boil Biochem 20:221–225CrossRefGoogle Scholar
  43. Liu XM, Zhao HX, Chen SF (2006) Colonization of maize and rice plants by strain Bacillus megaterium C4. Curr Microbiol 52:186–190CrossRefPubMedGoogle Scholar
  44. Loaces I, Ferrando L, Fernandez Scavino A (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618CrossRefPubMedGoogle Scholar
  45. Loiret FG, Ortega E, Kleiner D, Ortega-Rode’s P, Rode’s P, Dong Z (2004) A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. J Appl Microbiol 97:504–511CrossRefPubMedGoogle Scholar
  46. Martin DE, Reinhold-Hurek B (2002) Distinct roles of PII-like signal transmitter protein and amtB. regulation of nif gene expression, nitrogenase activity, and posttranslational modification of NifH in Azoarcus sp. strain BH72. J Bacteriol 184:2251–2259CrossRefPubMedCentralPubMedGoogle Scholar
  47. Mehnaz S, Kowalik T, Reynolds B, Lazarovitz G (2010) Growth promoting effects of corn (Zea mays) bacterial isolates under greenhouse and field conditions. Soil Biol Biochem 42:1848–1856CrossRefGoogle Scholar
  48. Meng X, Wang L, Long X, Liu Z, Zhang Z, Zed R (2012) Influence of nitrogen fertilization on diazotrophic communities in the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L. Research Microbiol 163:349–356CrossRefGoogle Scholar
  49. Montañez A, Abreu C, Gill PR, Hardarson G, Sicardi M (2009) Biological nitrogen fixation in maize (Zea mays L.) by 15N isotope dilution and identification of associated culturable diazotrophs. Biol Fertil Soils 45:253–263CrossRefGoogle Scholar
  50. Montañez A, Rodriguez-Blanco A, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28CrossRefGoogle Scholar
  51. Muthukumarasamy R, Kang UG, Park KD, Jeon WT, Park CY, Cho YS, Kwon SW, Song J, Roh DH, Revathi G (2007) Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on rice plants. J Appl Microbiol 102:981–991PubMedGoogle Scholar
  52. Muthukumarasamy R, Revathi G, Lakshminarasimhan C (1999) Influence of N fertilization on the isolation of Acetobacter diazotrophicus and Herbaspirillum spp. from Indian sugarcane varieties. Biol Fertil Soils 29:157–164CrossRefGoogle Scholar
  53. Muthukumarasamy R, Revathi G, Loganathan P (2002) Effect of inorganic N on the population, in vitro colonization and morphology of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus). Plant Soil 243:91–102CrossRefGoogle Scholar
  54. Naveed M, Mitter B, Yousaf S, Pastar M, Afzal M, Sessitsch A (2014) The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol Fertil Soils 50:249–262CrossRefGoogle Scholar
  55. Nguyen TH, Deaker R, Kennedy IR, Roughley RJ (2003) The positive yield response of field-grown rice to inoculation with a multi strain biofertilizer in the Hanoi area, Vietnam. Symbiosis 35:231–245Google Scholar
  56. Ohkuma M, Noda S, Kudo T (1999) Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl Environ Microbiol 65:4926–4934PubMedCentralPubMedGoogle Scholar
  57. Pariona-Llanos R, de Santi I, Ferrara F, Soto Gonzales HH, Ramos Barbosa H (2010) Influence of organic fertilization on the number of culturable diazotrophic endophytic bacteria isolated from sugarcane. Eur J Soil Biol 46:387–393CrossRefGoogle Scholar
  58. Park M, Chungwoo K, Jinchul Y, Lee H, Wansik S, Seunghwan K, Tongmin S (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133CrossRefPubMedGoogle Scholar
  59. Piceno Y, Lovell C (2000) Stability in natural bacterial communities: I. Nutrient addition effects on rhizosphere diazotroph assemblage composition. Microb Ecol 39:32–40CrossRefPubMedGoogle Scholar
  60. Prakamhang J, Minamisawa K, Teamtaisong K, Boonkerd N, Teaumroong N (2009) The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L). Soil Ecol Appl 42:141–14CrossRefGoogle Scholar
  61. Reinhold-Hurek B, Hurek T, Claeyssens M, van Montagu M (1993) Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root invading diazotroph. J Bacteriol 175:7056–7065PubMedCentralPubMedGoogle Scholar
  62. Rennie RJ (1981) A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol 27:8–14CrossRefPubMedGoogle Scholar
  63. Riggs PJ, Chelious MK, Inguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28:8–14Google Scholar
  64. Rodríguez-Blanco A, Sicardi M, Frioni L (2010) Competition for nodule occupancy between introduced and native strains of Rhizobium leguminosarum biovar trifolii. Biol Fertil Soils 46:419–425CrossRefGoogle Scholar
  65. Roesch LFW, Camargo FAO, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302:91–104CrossRefGoogle Scholar
  66. Roesch LFW, Olivares F, Pereira L, Selbach PA, Saccol de Sá E, Camargo FAO (2006) Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen- supply. World J Microbiol Biotechnol 22:967–974CrossRefGoogle Scholar
  67. Roesch LFW, Passaglia LMP, Bento FM, Triplett EW, Camargo FAO (2007) Diversidade de bactérias diazotróficas endofíticas associadas a plantas de milho. R Bras Ci Solo 31:1367–1380CrossRefGoogle Scholar
  68. Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837CrossRefPubMedGoogle Scholar
  69. Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. LSMR 21:1–30Google Scholar
  70. Sajjad M, Ahmad W, Latif F, Haurat J, Bally R, Normand P, Malik KA (2001) Isolation, partial characterization, and effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 237:47–54CrossRefGoogle Scholar
  71. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  72. Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Cura JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 1:1768–1774CrossRefGoogle Scholar
  73. Solomon BD, Barnes JR, Halvorsen KE (2007) Grain and cellulosic ethanol: history, economics, and energy policy. Biomass Bioenerg 31:416–425CrossRefGoogle Scholar
  74. Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009–1015CrossRefPubMedGoogle Scholar
  75. Tan ZY, Peng GX, Xu PZ (2009) Diversity and high nitrogenase activity of endophytic diazotrophs isolated from Oryza rufipogon Griff. Chin Sci Bull 54:2839–2848CrossRefGoogle Scholar
  76. Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis V, Sicardi M, Battistoni F (2012) Contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.) growth by 15-N isotope dilution and identification of associated endophytic diazotrophs. Plant Soil 356:35–49CrossRefGoogle Scholar
  77. Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2- fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417PubMedCentralPubMedGoogle Scholar
  78. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR). Methods Mol Cell Biol 5:25–40Google Scholar
  79. Wei CY, Lin L, Luo L-J, Xing Y-X, Hu C-J, Yang L-T, Y-R L, An Q (2014) Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biol Fertil Soils 50:657–666CrossRefGoogle Scholar
  80. Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166CrossRefGoogle Scholar
  81. Yeager CM, Kornosky J, Housman DC, Grote EE, Belnap J, Kuske CR (2004) Diazotrophic community structure and function in two successional stages of biologicals crusts from the Colorado plateau and Chihuahuan desert. Appl Environ Microbiol 70:973–983CrossRefPubMedCentralPubMedGoogle Scholar
  82. Yim WJ, Poonguzhali S, Madhaiyan M, Palaniappan P, Siddijee MA, Sa T (2009) Characterization of plant growth promoting diazotrophic bacteria isolated from field grown Chinese cabbage under different fertilization conditions. J Microbiol 47:147–155CrossRefPubMedGoogle Scholar
  83. Zani S, Mellon MT, Collier JL, Zehr JP (2000) Expression of nifH genes in natural assemblages in Lake George, New York, detected by reverse transcriptase PCR. Appl Environ Microbiol 66:3119–3124CrossRefPubMedCentralPubMedGoogle Scholar
  84. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554CrossRefPubMedGoogle Scholar
  85. Zlotnikova AK, Kazakova ML, Zlotnikov KM, Kazakov AV, Umarov MM (2007) Physiological and biochemical properties of the bacterial association of Klebsiella terrigena E6 and Bacillus firmus E3. Appl Biochem Microbiol 43:304–312CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrea Rodríguez-Blanco
    • 1
  • Margarita Sicardi
    • 2
  • Lillian Frioni
    • 1
  1. 1.Laboratorio de Microbiología, Departamento de Biología Vegetal. Facultad de AgronomíaUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Laboratorio de Microbiología del Suelo, Instituto de Ecología y Ciencias Ambientales (IECA). Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations