Biology and Fertility of Soils

, Volume 51, Issue 1, pp 123–134 | Cite as

Carbon sequestration potential of hydrothermal carbonization char (hydrochar) in two contrasting soils; results of a 1-year field study

  • Saadatullah Malghani
  • Elisabeth Jüschke
  • Julia Baumert
  • Angelika Thuille
  • Markus Antonietti
  • Susan Trumbore
  • Gerd GleixnerEmail author
Original Paper


Soil amendment with hydrochar produced by hydrothermal carbonization of biomass is suggested as a simple, cheap, and effective method for increasing soil C. We traced C derived from corn silage hydrochar (δ13C of −13 ‰) added to “coarse” and “fine” textured soils (δ13C of −27 ‰ for native soil C (SOC)) over two cropping seasons. Respiration rates increased in both soils (p < 0.001) following hydrochar addition, and most of this extra respiration was derived from hydrochar C. Dissolved losses accounted for ~5 % of added hydrochar C (p < 0.001). After 1 year, 33 ± 8 % of the added hydrochar C was lost from both soils. Decomposition rates for the roughly two thirds of hydrochar that remained were very low, with half-life for less estimated at 19 years. In addition, hydrochar-amended soils preserved 15 ± 4 % more native SOC compared to controls (negative priming). Hydrochar negatively affected plant height (p < 0.01) and biomass (p < 0.05) in the first but not the second crop grown on both soils. Our results confirm previous laboratory studies showing that initially, hydrochar decomposes rapidly and limits plant growth. However, the negative priming effect and persistence of added hydrochar C after 1 year highlight its soil C sequestration potential, at least on decadal timescales.


Hydrochar Plant growth Soil respiration Soil leachate Carbon isotopes Physical soil parameters 



The authors are thankful to the Max Planck Society for funding of the ENERCHEM initiative and the German Research Council (DFG) for funding the graduate school 1257 “Alteration and element mobility at the microbe-mineral interface.” The authors are also thankful to the central facilities at MPI-BGC for measuring element and isotope content in soil, water, and gas samples and to Carbon Solution Ltd. for providing hydrochar. Student helpers especially Ariane Strassburger, Tina Oertel, and Sebastian König are also gratefully acknowledged for their help in field and lab work.

Supplementary material

374_2014_980_MOESM1_ESM.docx (53 kb)
ESM 1 (DOCX 52 kb)
374_2014_980_MOESM2_ESM.docx (41 kb)
ESM 2 (DOCX 41 kb)


  1. Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202–203:183–191. doi: 10.1016/j.geoderma.2013.03.003 CrossRefGoogle Scholar
  2. Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42:1619–1640. doi: 10.1021/ie0207919 CrossRefGoogle Scholar
  3. Bai M, Wilske B, Buegger F, Esperschütz J, Kammann CI, Eckhardt C, Koestler M, Kraft P, Bach M, Frede H-G, Breuer L (2013) Degradation kinetics of biochar from pyrolysis and hydrothermal carbonization in temperate soils. Plant Soil 372:375–387. doi: 10.1007/s11104-013-1745-6 CrossRefGoogle Scholar
  4. Balesdent J, Mariotti A (1996) Measurement of soil organic matter turnover using 13C natural abundance. In: Boutton TW, Yamasaki SY (eds) Mass spectrometry of soils. Marcel Dekker, New York, pp 83–111Google Scholar
  5. Bargmann I, Rillig MC, Kruse A, Greef J-M, Kücke M (2014) Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. J Plant Nutr Soil Sci 177:48–58. doi: 10.1002/jpln.201300069 CrossRefGoogle Scholar
  6. Berge ND, Ro KS, Mao J, Flora JR, Chappell MA, Bae S (2011) Hydrothermal carbonization of municipal waste streams. Environ Sci Technol 45:5696–5703. doi: 10.1021/es2004528 PubMedCrossRefGoogle Scholar
  7. Bisutti I, Hilke I, Raessler M (2004) Determination of total organic carbon—an overview of current methods. Trends Anal Chem 23:716–726. doi: 10.1016/j.trac.2004.09.003 CrossRefGoogle Scholar
  8. Brookers P, Beyaert R, Voroney R (2007) Soil microbial biomass C, N, P, and S. In: Carter MR, Gregorich EG (eds) Soil sampling & methods of analysis, 2nd edn. CRC Press, Boca Raton, pp 637–651. doi: 10.1201/9781420005271.ch49 Google Scholar
  9. Busch D, Kammann C, Grunhage L, Muller C (2012) Simple biotoxicity tests for evaluation of carbonaceous soil additives: establishment and reproducibility of four test procedures. J Environ Qual 41:1023–1032. doi: 10.2134/jeq2011.0122 PubMedCrossRefGoogle Scholar
  10. Busch D, Stark A, Kammann CI, Glaser B (2013) Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis. Ecotoxicol Environ Saf 97:59–66. doi: 10.1016/j.ecoenv.2013.07.003 PubMedCrossRefGoogle Scholar
  11. Cao X, Ro KS, Chappell M, Li Y, Mao J (2011) Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state13C nuclear magnetic resonance (NMR) spectroscopy. Energy Fuels 25:388–397. doi: 10.1021/ef101342v CrossRefGoogle Scholar
  12. Farrell M, Macdonald L, Butler G, Chirino-Valle I, Condron L (2014) Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biol Fertil Soils 50:169–178. doi: 10.1007/s00374-013-0845-z CrossRefGoogle Scholar
  13. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843. doi: 10.1016/S0038-0717(03)00123-8 CrossRefGoogle Scholar
  14. Fuertes AB, Arbestain MC, Sevilla M, Maciá-Agulló JA, Fiol S, López R, Smernik RJ, Aitkenhead WP, Arce F, Macías F (2010) Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust J Soil Res 48:618. doi: 10.1071/sr10010 CrossRefGoogle Scholar
  15. Gajic A, Koch HJ (2012) Sugar beet (L.) growth reduction caused by hydrochar is related to nitrogen supply. J Environ Qual 41:1067–1075. doi: 10.2134/jeq2011.0237 PubMedCrossRefGoogle Scholar
  16. George C, Wagner M, Kücke M, Rillig MC (2012) Divergent consequences of hydrochar in the plant–soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects. Appl Soil Ecol 59:68–72. doi: 10.1016/j.apsoil.2012.02.021 CrossRefGoogle Scholar
  17. Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33:357–366. doi: 10.1016/s0146-6380(01)00166-8 CrossRefGoogle Scholar
  18. Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels 25:1802–1810. doi: 10.1021/ef101745n CrossRefGoogle Scholar
  19. Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828. doi: 10.1002/adma.200902812 PubMedCrossRefGoogle Scholar
  20. Jandl G, Eckhardt KU, Bargmann I, Kucke M, Greef JM, Knicker H, Leinweber P (2013) Hydrothermal carbonization of biomass residues: mass spectrometric characterization for ecological effects in the soil-plant system. J Environ Qual 42:199–207. doi: 10.2134/jeq2012.0155 PubMedCrossRefGoogle Scholar
  21. Johnson JMF, Barbour NW, Weyers SL (2007) Chemical composition of crop biomass impacts its decomposition. Soil Sci Soc Am J 71:155–162. doi: 10.2136/sssaj2005.0419 CrossRefGoogle Scholar
  22. Kammann C, Ratering S, Eckhard C, Muller C (2012) Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J Environ Qual 41:1052–1066. doi: 10.2134/jeq2011.0132 PubMedCrossRefGoogle Scholar
  23. Karsten K, Denis A, Klaus K, Martin C (2007) Extraction and characterization of dissolved organic matter. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton, pp 617–635. doi: 10.1201/9781420005271.ch48 Google Scholar
  24. Keith A, Singh B, Singh BP (2011) Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environ Sci Technol 45:9611–9618. doi: 10.1021/es202186j PubMedCrossRefGoogle Scholar
  25. Khodadad CLM, Zimmerman AR, Green SJ, Uthandi S, Foster JS (2011) Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem 43:385–392. doi: 10.1016/j.soilbio.2010.11.005 CrossRefGoogle Scholar
  26. Knohl A, Werner RA, Geilmann H, Brand WA (2004) Kel-F discs improve storage time of canopy air samples in 10-mL vials for CO213C analysis. Rapid Comm Mass Spectr 18:1663–1665. doi: 10.1002/rcm.1528 CrossRefGoogle Scholar
  27. Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371. doi: 10.1016/j.soilbio.2010.04.003 CrossRefGoogle Scholar
  28. Kuzyakov Y, Bogomolova I, Glaser B (2014) Biochar stability in soil: decomposition during 8 years and transformation as assessed by compound-specific 14C analysis. Soil Biol Biochem 70:229–236. doi: 10.1016/j.soilbio.2013.12.021 CrossRefGoogle Scholar
  29. Lehmann J (2007) A handful of carbon. Nature 447:143–144. doi: 10.1038/447143a PubMedCrossRefGoogle Scholar
  30. Liang JL, Liu YH, Zhang JB (2011) Effect of solution pH on the carbon microsphere synthesized by hydrothermal carbonization. Procedia Environ Sci 11:1322–1327. doi: 10.1016/j.proenv.2011.12.198 CrossRefGoogle Scholar
  31. Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici M-M, Fühner C, Bens O, Kern J, Emmerich K-H (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106. doi: 10.4155/bfs.10.81 CrossRefGoogle Scholar
  32. Liu Z, Quek A, Kent Hoekman S, Balasubramanian R (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949. doi: 10.1016/j.fuel.2012.07.069 CrossRefGoogle Scholar
  33. Malghani S, Gleixner G, Trumbore SE (2013) Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol Biochem 62:137–146. doi: 10.1016/j.soilbio.2013.03.013 CrossRefGoogle Scholar
  34. Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol 45:9473–9483. doi: 10.1021/es201792c PubMedCrossRefGoogle Scholar
  35. Miller JB, Tans PP (2003) Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus Sr B 55:207–214. doi: 10.1034/j.1600-0889.2003.00020.x CrossRefGoogle Scholar
  36. Moyano FE, Kutsch WL, Rebmann C (2008) Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agric Forest Meteorol 148:135–143. doi: 10.1016/j.agrformet.2007.09.006 CrossRefGoogle Scholar
  37. Naisse C, Girardin C, Lefevre R, Pozzi A, Maas R, Stark A, Rumpel C (2014) Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil. GCB Bioenergy: NA. doi: 10.1111/gcbb.12158 Google Scholar
  38. O’Toole A, Knoth de Zarruk K, Steffens M, Rasse DP (2013) Characterization, stability, and plant effects of kiln-produced wheat straw biochar. J Environ Qual 42:429–436. doi: 10.2134/jeq2012.0163 PubMedCrossRefGoogle Scholar
  39. Ogawa M, Okimori Y (2010) Pioneering works in biochar research, Japan. Aust J Soil Res 48:489–500. doi: 10.1071/Sr10006 CrossRefGoogle Scholar
  40. Oliveira I, Blohse D, Ramke HG (2013) Hydrothermal carbonization of agricultural residues. Bioresour Technol 142:138–146. doi: 10.1016/j.biortech.2013.04.125 PubMedCrossRefGoogle Scholar
  41. Prayogo C, Jones J, Baeyens J, Bending G (2014) Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol Fertil Soils 50:695–702. doi: 10.1007/s00374-013-0884-5 CrossRefGoogle Scholar
  42. Qayyum MF, Steffens D, Reisenauer HP, Schubert S (2012) Kinetics of carbon mineralization of biochars compared with wheat straw in three soils. J Environ Qual 41:1210–1220. doi: 10.2134/jeq2011.0058 PubMedCrossRefGoogle Scholar
  43. Ramke HG, Blöhse D, H.J. L, J. F (2009) Hydrothermal carbonization of organic waste. In: Cossu R, Diaz LF, Stegmann R (Eds) Twelfth International Waste Management and Landfill Symposium Sardinia, Italy. CISAGoogle Scholar
  44. Rillig MC, Wagner M, Salem M, Antunes PM, George C, Ramke H-G, Titirici M-M, Antonietti M (2010) Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza. Appl Soil Ecol 45:238–242. doi: 10.1016/j.apsoil.2010.04.011 CrossRefGoogle Scholar
  45. Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J (2010) Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ Sci Technol 44:827–833. doi: 10.1021/es902266r PubMedCrossRefGoogle Scholar
  46. Schimmelpfennig S, Glaser B (2012) One step forward toward characterization: some important material properties to distinguish biochars. J Environ Qual 41:1001–1013. doi: 10.2134/jeq2011.0146 PubMedCrossRefGoogle Scholar
  47. Sevilla M, Maciá-Agulló JA, Fuertes AB (2011) Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenergy 35:3152–3159. doi: 10.1016/j.biombioe.2011.04.032 CrossRefGoogle Scholar
  48. Sohi S, Lopez C.E, Krull E, R. B (2009) Biochar, climate change and soil: a review to guide future research. CSIRO Land and Water Science Report 05/09. CSIRO, CSIRO Land and Water Science Report series. doi:
  49. Song Y, Zhang X, Ma B, Chang S, Gong J (2014) Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil. Biol Fertil Soils 50:321–332. doi: 10.1007/s00374-013-0857-8 CrossRefGoogle Scholar
  50. Steinbeiss S, BeßLer H, Engels C, Temperton VM, Buchmann N, Roscher C, Kreutziger Y, Baade J, Habekost M, Gleixner G (2008) Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob Chang Biol 14:2937–2949. doi: 10.1111/j.1365-2486.2008.01697.x CrossRefGoogle Scholar
  51. Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310. doi: 10.1016/j.soilbio.2009.03.016 CrossRefGoogle Scholar
  52. Titirici M-M, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31:787–789. doi: 10.1039/b616045j CrossRefGoogle Scholar
  53. Werner RA, Brand WA (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Comm Mass Spectr 15:501–519. doi: 10.1002/rcm.258 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Saadatullah Malghani
    • 1
    • 2
  • Elisabeth Jüschke
    • 1
  • Julia Baumert
    • 1
  • Angelika Thuille
    • 1
  • Markus Antonietti
    • 3
  • Susan Trumbore
    • 1
  • Gerd Gleixner
    • 1
    Email author
  1. 1.Department of Biogeochemical ProcessesMax Planck Institute for BiogeochemistryJenaGermany
  2. 2.Friedrich Schiller UniversityJenaGermany
  3. 3.Max Planck Institute of Colloids and InterfacesPotsdam-GolmGermany

Personalised recommendations