Biology and Fertility of Soils

, Volume 50, Issue 6, pp 879–889 | Cite as

Potential of prolonged midseason drainage for reducing methane emission from rice paddies in Japan: a long-term simulation using the DNDC-Rice model

  • Kazunori MinamikawaEmail author
  • Tamon Fumoto
  • Masayuki Itoh
  • Michiko Hayano
  • Shigeto Sudo
  • Kazuyuki Yagi
Original Paper


Water management practices, such as midseason drainage (MD) and intermittent irrigation, are effective in reducing methane (CH4) emission from irrigated rice paddies. In a previous study in which two-year field experiments were conducted at nine sites across Japan, prolonged MD was found to reduce the seasonal total CH4 emission by 30.5 ± 6.7 % (mean ± 95 % confidence interval) compared with conventional MD without compromising rice grain yield. However, the degree of CH4 reduction by water management is dependent on prevailing weather conditions. To estimate the mean effect of prolonged MD on CH4 emission at the nine sites with rice straw application, we conducted a long-term (20 years) simulation using a process-based biogeochemistry model, the DNDC-Rice. The model adjusted using site-specific parameters was able to reproduce the measured magnitude of the total CH4 emission and the suppressive effect of prolonged MD. The number of nonrainy days during MD explained the degree of CH4 reduction for each site and all sites combined. In the simulation, mean reduction percentage was 20.1 ± 5.6 % when acceptable prolonged MD (i.e., having less than 15 % yield loss) was applied compared with conventional MD. The discrepancy of the percentage between measurement and simulation was primarily attributable to longer nonrainy days during prolonged MD at several sites in the measurement than the mean of 20-year simulation. We therefore conclude that the long-term simulation better represents the mean reduction percentage of CH4 emission by prolonged MD relative to conventional MD at the nine sites across Japan.


DNDC Methane Midseason drainage Rice Water management 



We thank Dr. Nobuko Katayanagi (NIAES, Japan) for her valuable comments regarding model validation. We also thank Mr. Yoichi Konno (Yamagata Integrated Agricultural Research Center, Japan), Mr. Satoru Ohkoshi (Fukushima Agricultural Technology Center, Japan), Dr. Yutaka Shiratori (Niigata Agricultural Research Institute, Japan), Dr. Shinobu Suga (Gifu Prefectural Agricultural Technology Center, Japan), Mr. Masaki Tsuji (Aichi Agricultural Research Center, Japan), Mr. Yasufumi Suzue (Tokushima Agriculture, Forestry, and Fishery Technology Support Center, Japan), Mr. Hiroyuki Mizukami (Kumamoto Prefectural Agricultural Research Center, Japan), and Mr. Ichirou Uezono (Kagoshima Prefectural Institute for Agricultural Development, Japan) for providing valuable information about the field experiment.

Supplementary material

374_2014_909_MOESM1_ESM.pdf (76 kb)
Fig. S1 (PDF 75 kb)
374_2014_909_MOESM2_ESM.pdf (31 kb)
Fig. S2 (PDF 30 kb)
374_2014_909_MOESM3_ESM.pdf (14 kb)
Fig. S3 (PDF 14 kb)


  1. Babu YJ, Li C, Frolking S, Nayak DR, Adhya TK (2006) Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India. Nutr Cycl Agroecosyst 74:157–174. doi: 10.1007/s10705-005-6111-5 CrossRefGoogle Scholar
  2. Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ 20:1175–1183. doi: 10.1046/j.1365-3040.1997.d01-142.x CrossRefGoogle Scholar
  3. Cicerone RJ, Shetter JD (1981) Sources of atmospheric methane: measurements in rice paddies and a discussion. J Geophys Res 86:7203–7209. doi: 10.1029/JC086iC08p07203 CrossRefGoogle Scholar
  4. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York, pp 539–544Google Scholar
  5. Food and Agriculture Organization (2007) FertiStat: fertilizer use statistics. Accessed 1 November 2013
  6. Fumoto T, Kobayashi K, Li C, Yagi K, Hasegawa T (2008) Revising a process-based biogeochemistry model DNDC to simulate methane emission from paddy fields under various residue managements. Glob Chang Biol 14:382–402. doi: 10.1111/j.1365-2486.2007.01475.x CrossRefGoogle Scholar
  7. Fumoto T, Yanagihara T, Saito T, Yagi K (2010) Assessment of the methane mitigation potentials of alternative water regimes in rice fields using a process-based biogeochemistry model. Glob Chang Biol 16:1847–1859CrossRefGoogle Scholar
  8. Greenhouse Gas Inventory Office of Japan (GIO) (2013) 6.4. Rice cultivation (4.C.). In: GIO (ed) National greenhouse gas inventory report of Japan, pp 6.20–6.25. Accessed 1 June 2013
  9. Holzapfel-Pschorn A, Conrad R, Seiler W (1985) Production, oxidation and emission of methane in rice paddies. FEMS Microbiol Lett 31:343–351. doi: 10.1111/j.1574-6968.1985.tb01170.x CrossRefGoogle Scholar
  10. Inubushi K, Sakamoto K, Sawamoto T (2005) Properties of microbial biomass in acid soils and their turnover. Soil Sci Plant Nutr 51:605–608. doi: 10.1111/j.1747-0765.2005.tb00073.x CrossRefGoogle Scholar
  11. Itoh M, Sudo S, Mori S et al (2011) Mitigation of methane emissions from paddy fields by prolonging midseason drainage. Agric Ecosyst Environ 141:359–372CrossRefGoogle Scholar
  12. Kanno T, Miura Y, Tsuruta H, Minami K (1997) Methane emission from rice paddy fields in all of Japanese prefecture: relationship between emission rates and soil characteristics, water treatment and organic matter application. Nutr Cycl Agroecosyst 49:147–151. doi: 10.1023/A:1009778517545 CrossRefGoogle Scholar
  13. Katayanagi K, Furukawa Y, Fumoto T, Hosen Y (2012) Validation of the DNDC-rice model by using CH4 and N2O flux data from rice cultivated in pots under alternate wetting and drying irrigation management. Soil Sci Plant Nutr 58:360–372CrossRefGoogle Scholar
  14. Li C (2000) Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl Agroecosyst 58:259–276. doi: 10.1080/00380768.2012.682955 CrossRefGoogle Scholar
  15. Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J Geophys Res 97:9759–9776. doi: 10.1029/92JD00509 CrossRefGoogle Scholar
  16. Li C, Frolking S, Harriss R (1994) Modeling carbon biogeochemistry in agricultural soils. Global Biogeochem Cycles 8:237–254. doi: 10.1029/94GB00767 CrossRefGoogle Scholar
  17. Li C, Aber J, Stange F, Butterbach-Bahl K, Papen H (2000) A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. J Geophys Res 105:4369–4384. doi: 10.1029/1999JD900949 CrossRefGoogle Scholar
  18. Li C, Qiu J, Frolking S, Xiao S, Salas W, Moore B III, Boles S, Huang Y, Sass R (2002) Reduced methane emissions from large-scale changes in water management of China’s rice paddies during 1980–2000. Geophys Res Lett 29, GL1972. doi: 10.1029/2002GL015370 CrossRefGoogle Scholar
  19. Li C, Mosier A, Wassmann R, Cai Z, Zheng X, Huang Y, Tsuruta H, Boonjawat J, Lantin R (2004) Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Global Biogeochem Cycles 18, GB1043. doi: 10.1029/2003GB002045 Google Scholar
  20. Minamikawa K, Sakai N, Yagi K (2006) Methane emission from paddy fields and its mitigation options on a field scale. Microbes Environ 21:135–147. doi: 10.1264/jsme2.21.135 CrossRefGoogle Scholar
  21. Nishimura S, Sawamoto T, Akiyama H, Sudo S, Yagi K (2004) Methane and nitrous oxide emissions from a paddy field with Japanese conventional water management and fertilizer application. Global Biogeochem Cycles 18, GB2017. doi: 10.1029/2003GB002207 Google Scholar
  22. Osozawa S (1987) Measurement of soil-gas diffusion coefficient for soil diagnosis. Soil Phys Cond Plant Growth Jpn 55:53–60, in Japanese with English summaryGoogle Scholar
  23. Penning de Vries FWT, Jansen DM, ten Berge HFM, Bakema A (eds) (1989) Simulation of ecophysiological processes of growth in several annual crops. Pudoc, WageningenGoogle Scholar
  24. Ramaswamy V, Boucher O, Haigh J, Hauglustaine D, Haywood J, Myhre G, Nakajima T, Shi G.Y, Solomon S (2001) Radiative forcing of climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 349–416Google Scholar
  25. Schütz H, Seiler W, Conrad R (1989) Processes involved in formation and emission of methane in rice paddies. Biogeochemistry 7:33–53. doi: 10.1007/BF00000896 CrossRefGoogle Scholar
  26. Shiratori Y, Watanabe H, Furukawa Y, Tsuruta H, Inubushi K (2007) Effectiveness of a subsurface drainage system in poorly drained paddy fields on reduction of methane emissions. Soil Sci Plant Nutr 53:387–400. doi: 10.1111/j.1747-0765.2007.00171.x CrossRefGoogle Scholar
  27. Smakgahn K, Fumoto T, Yagi K (2009) Validation of revised DNDC model for methane emissions from irrigated rice fields in Thailand and sensitivity analysis of key factors. J Geophys Res Biogeosci 114, G02017. doi: 10.1029/2008JG000775 CrossRefGoogle Scholar
  28. Takai Y, Kamura T (1966) The mechanism of reduction in waterlogged paddy soil. Folia Microbiol 11:304–313. doi: 10.1007/BF02878902 CrossRefGoogle Scholar
  29. Tokida T, Fumoto T, Cheng W, Matsunami T, Adachi M, Katayanagi N, Matsushima M, Okawara Y, Nakamura H, Okada M, Sameshima R, Hasegawa T (2010) Effects of free-air CO2 enrichment (FACE) and soil warming on CH4 emission from a rice paddy field: impact assessment and stoichiometric evaluation. Biogeosciences 7:2639–2653. doi: 10.5194/bg-7-2639-2010 CrossRefGoogle Scholar
  30. Watanabe A, Takeda T, Kimura M (1999) Evaluation of origins of CH4 carbon emitted from rice paddies. J Geophys Res-Atmos 104:23623–23629. doi: 10.1029/1999JD900467 CrossRefGoogle Scholar
  31. Yagi K, Tsuruta H, Kanda K, Minami K (1996) Effect of water management on methane emission from a Japanese rice paddy field: automated methane monitoring. Global Biogeochem Cycles 10:255–267. doi: 10.1029/96GB00517 CrossRefGoogle Scholar
  32. Yagi K, Tsuruta H, Minami K (1997) Possible options for mitigating methane emission from rice cultivation. Nutr Cycl Agroecosyst 49:213–220. doi: 10.1023/A:1009743909716 CrossRefGoogle Scholar
  33. Yanai J, Sawamoto T, Oe T, Kusa K, Yamakawa K, Sakamoto K, Naganawa T, Inubushi K, Hatano R, Kosaki T (2003) Spatial variability of nitrous oxide emissions and their soil-related determining factors in an agricultural field. J Environ Qual 32:1965–1977PubMedCrossRefGoogle Scholar
  34. Zhang L, Yu D, Shi X, Weindorf DC, Zhao L, Ding W, Wang H, Pan J, Li C (2009) Simulation of global warming potential (GWP) from rice fields in the Tai-Lake region, China by coupling 1:50,000 soil database with DNDC model. Atmos Environ 43:2737–2746CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kazunori Minamikawa
    • 1
    Email author
  • Tamon Fumoto
    • 1
  • Masayuki Itoh
    • 2
  • Michiko Hayano
    • 1
  • Shigeto Sudo
    • 1
  • Kazuyuki Yagi
    • 1
  1. 1.Carbon and Nutrient Cycles DivisionNational Institute for Agro-Environmental SciencesTsukubaJapan
  2. 2.Center for Southeast Asian StudiesKyoto UniversityKyotoJapan

Personalised recommendations