Biology and Fertility of Soils

, Volume 50, Issue 5, pp 815–826 | Cite as

Changes in bacterial and archaeal community assemblages along an ombrotrophic peat bog profile

  • Edoardo Puglisi
  • Claudio Zaccone
  • Fabrizio Cappa
  • Pier Sandro Cocconcelli
  • William Shotyk
  • Marco TrevisanEmail author
  • Teodoro M. Miano
Original Paper


Peatlands are archives of extreme importance for the assessment of past ecological, environmental and climatic changes. The importance as natural archives is even greater in the case of ombrotrophic peat bogs, where the only inputs are atmospheric in origin. Here we integrated previously published physical and chemical results regarding the solid and liquid phase of peat with a biomolecular microbiological approach to assess the relationships between chemistry and microbial biodiversity along a Swiss bog profile corresponding to approximately 2,000 years of peat formation. The structure of bacterial and archaeal communities was assessed through a polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach followed by sequencing of PCR-DGGE bands of interest. Both chemical and microbiological data showed a differentiation of properties along the peat profile, with three major zones identified. Both bacterial and archaeal profiles clustered according to the depth (i.e., age) of samples. Among bacteria, Acidobacteria were recovered primarily in the first layers of the profile, whereas methanogenic archaea were more commonly recovered in the deepest part of the core, corresponding to the occurring anoxic conditions. Finally, a number of sequences had low homologies with known species, especially in bacteria: this points to an almost unknown microbial community adapted to the extreme conditions of peat bogs, which are acidic, rich in dissolved organic C, and predominantly anoxic.


Peatlands Ombrotrophic peat bog Bacterial community Archaeal community PCR-DGGE 



This research was conducted within the PRIN 2009 project “Chemical and biomolecular indicators for reconstructing environmental changes in natural archives” (2009NBHPWR), financed by MIUR (Italian Ministry for University and Research). The authors are grateful to Maria Giulia Parisi for her support in the molecular analyses.


  1. Aaby B (1976) Cyclic climatic variations in climate over the past 5,500 yr reflected in raised bogs. Nature 263:281–284CrossRefGoogle Scholar
  2. Andersen R, Chapman SJ, Artz RRE (2013) Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem 57:979–994CrossRefGoogle Scholar
  3. Boz B, Rahman MM, Bottegal M, Basaglia M, Squartini A, Gurniero B, Casella S (2013) Vegetation, soil and hydrology management influence the denitrification activity and the composition of nirK-type denitrifiers communities in a newly afforested riparian buffer. New Biotechnol 30:675–684CrossRefGoogle Scholar
  4. Bräuer SL, Cadillo-Quiroz H, Yashiro E, Yavitt JB, Zinder SH (2006) Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442:192–194PubMedCrossRefGoogle Scholar
  5. Cadillo‐Quiroz H, Bräuer S, Yashiro E, Sun C, Yavitt J, Zinder S (2006) Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA. Environ Microbiol 8:1428–1440PubMedCrossRefGoogle Scholar
  6. Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soil 48:489–499CrossRefGoogle Scholar
  7. Clymo RS (1984) The limits to peat bog growth. Philos Trans R Soc B 303:605–654CrossRefGoogle Scholar
  8. Clymo R, Bryant C (2008) Diffusion of dissolved carbon dioxide, methane and dissolved organic carbon in a 7-m deep raised bog. Geochim Cosmochim Acta 72:2048–2066CrossRefGoogle Scholar
  9. Clymo RS, Hayward P (1982) The ecology of Sphagnum. In: Smith AJE (ed) Bryophyte ecology. Springer, Netherlands, pp 229–289CrossRefGoogle Scholar
  10. Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, Hedlund BP (2009) Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles 13:447–459PubMedCrossRefGoogle Scholar
  11. Damman A (1978) Distribution and movement of elements in ombrotrophic peat bogs. Oikos 30:480–495CrossRefGoogle Scholar
  12. Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W (2006) Phylogenetic analysis and in situ identification of Bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol 72:2110–2117PubMedCentralPubMedCrossRefGoogle Scholar
  13. Desvaux M, Guedon E, Petitdemange H (2001) Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. Appl Environ Microbiol 67:3837–3845PubMedCentralPubMedCrossRefGoogle Scholar
  14. Dettling MD, Yavitt JB, Cadillo-Quiroz H, Sun C, Zinder SH (2007) Soil–methanogen interactions in two peatlands bog, fen in Central New York State. Geomicrobiol J 24:247–259CrossRefGoogle Scholar
  15. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  16. Fierer N, Jackosn RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition trhough two soil depth profiles. Soil Biol Biochem 35:167–176CrossRefGoogle Scholar
  18. Frolking S, Roulet NT, Moore TR, Richard PJ, Lavoie M, Muller SD (2001) Modeling northern peatland decomposition and peat accumulation. Ecosystems 4:479–498CrossRefGoogle Scholar
  19. Fuka MM, Engel M, Haesler F, Welzl G, Much JC, Schloter M (2008) Diversity of proteolytic community encoding for subtilisin in an arable field: spatial and temporal variability. Biol Fertil Soils 45:185–191CrossRefGoogle Scholar
  20. Galand PE, Saarnio S, Fritze H, Yrjälä K (2002) Depth related diversity of methanogen Archaea in Finnish oligotrophic fen. FEMS Microbiol Ecol 42:441–449PubMedCrossRefGoogle Scholar
  21. Garrity GM, Holt JG (2001) Phylum AI. Crenarchaeota phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 169–201CrossRefGoogle Scholar
  22. Golovencho AV, Tikhonova EY, Zvyaginster DG (2007) Abundance, biomass, structure and activity of the microbial complexes of the minerotrophic and ombrotrophic peatlands. Microbiology 76:630–637CrossRefGoogle Scholar
  23. Gorham E (1991) Northern peatlands role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195CrossRefGoogle Scholar
  24. Gouy M, Guindon SP, Gascuel O (2010) SeaView Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224PubMedCrossRefGoogle Scholar
  25. Guindon SP, Gascuel O (2003) A Simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  26. Herrmann M, Hädrich A, Küsel K (2012) Predominance of thaumarchaeal ammonia oxidizer abundance and transcriptional activity in an acidic fen. Environ Microbiol 14:3013–3025Google Scholar
  27. Hoj L, Olsen RA, Torsvik VL (2005) Archaeal communities in high arctic wetlands at Spitsbergen, Norway 78°N as characterized by 16S rRNA gene fingerprinting. FEMS Microbiol Ecol 53:89–101PubMedCrossRefGoogle Scholar
  28. Horn MA, Matthies C, Küsel K, Schramm A, Drake HL (2003) Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl Environ Microbiol 69:74–83PubMedCentralPubMedCrossRefGoogle Scholar
  29. Jaatinen K, Fritze H, Laine J, Laiho R (2007) Effect of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland. Glob Chang Biol 13:491–510CrossRefGoogle Scholar
  30. Joray M (1942) L'Etang de la Gruyère, Jura bernois. Etude pollenanalytique et stratigraphique de la tourbière. Matèriaux pour le Levè Gèobotanique de la Suisse, Vol. 25. Hans Huber, Berne.Google Scholar
  31. Juottonen H, Galand PE, Tuittila ES, Laine J, Fritze H, Yrjälä K (2005) Methanogen communities and Bacteria along an ecohydrological gradient in a northern raised bog complex. Environ Microbiol 7:1547–1557PubMedCrossRefGoogle Scholar
  32. Kamagata Y, Tamaki H (2005) Cultivation of uncultured fastidious microbes. Microbes Environ 20:85–91CrossRefGoogle Scholar
  33. Kivinen E, Pakarinen P (1981) Geographical distribution of peat resource and major peatland complex types in the world. Ann Acad Sci Fenn A3(132):1–28Google Scholar
  34. Kotsyurbenko OR, Chin KJ, Glagolev MV, Stubner S, Simankova MV, Nozhevnikova AN, Conrad R (2004) Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West‐Siberian peat bog. Environ Microbiol 6:1159–1173PubMedCrossRefGoogle Scholar
  35. Langdon P, Brown A, Caseldine C, Blockley S, Stuijts I (2011) Regional climate change from peat stratigraphy for the mid- to late Holocene in central Ireland. Quatern Int 268:145–155CrossRefGoogle Scholar
  36. Lauber CL, Zhou N, Gordon JI, Knight R, Fierer N (2010) Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol Lett 307:80–86PubMedCentralPubMedCrossRefGoogle Scholar
  37. Lethovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acidic soil. Proc Natl Acad Sci U S A 108:15892–15897CrossRefGoogle Scholar
  38. Madsen PP (1981) Peat bog records of atmospheric mercury deposition. Nature 293:127–130CrossRefGoogle Scholar
  39. Martınez-Cortizas A, Pontevedra-Pombal X, Garcıa-Rodeja E, Novoa-Munoz J, Shotyk W (1999) Mercury in a Spanish peat bog: archive of climate change and atmospheric metal deposition. Science 284:939–942PubMedCrossRefGoogle Scholar
  40. McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, Sieber J, Struchtermeyer CG, Bhattacharyya A, Campbell JW, Gunsalus RP (2007) The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci U S A 104:7600–7605PubMedCentralPubMedCrossRefGoogle Scholar
  41. Mellegård H, Stalheim T, Hormazabal V, Granum P, Hardy S (2009) Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food‐borne bacteria. Lett Appl Microbiol 49:85–90PubMedCrossRefGoogle Scholar
  42. Morales SE, Mouser PJ, Ward N, Hudman SP, Gotelli NJ, Ross DS, Lewis TA (2006) Comparison of bacterial communities in New England Sphagnum bogs using Terminal Restriction Fragment Length Polymorphism (T-RFLP). Microb Ecol 52:34–44PubMedCrossRefGoogle Scholar
  43. Nadelhoffer K, Fry B (1994) Nitrogen isotope studies in forest ecosystems. In: Lajtha M (ed) Stable isotopes in ecology and environmental science. Blackwell, Oxford, UK, pp 22–44Google Scholar
  44. Nercessian D, Upton M, Lloyd D, Edwards C (2006) Phylogenetic analysis of peat bog methanogen populations. FEMS Microbiol Lett 173:425–429CrossRefGoogle Scholar
  45. Pankratov TA, Ivanova AO, Dedysh SN, Liesack W (2011) Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ Microbiol 13:1800–1814PubMedCrossRefGoogle Scholar
  46. Rahman MM, Basaglia M, Vendramin E, Boz B, Fontana F, Gumiero B, Casella S (2013) Bacterial diversity of a wooded riparian strip soil specifically designed for enhancing the denitrification process. Biol Fertil Soils. doi: 10.1007/s00374-013-0828-0 Google Scholar
  47. Roos-Barraclough F, Van Der Knaap W, Van Leeuwen J, Shotyk W (2004) A Late-glacial and Holocene record of climatic change from a Swiss peat humification profile. The Holocene 14:7–19CrossRefGoogle Scholar
  48. Rubin BER, Gibbons SM, Kennedy S, Hampton-Marcell J, Owens S, Gilbert JA (2013) Investigating the impact of storage conditions on microbial community composition in soil samples. PLoS ONE 8(7):e7046CrossRefGoogle Scholar
  49. Rudolph H, Samland J (1985) Occurrence and metabolism of sphagnum acid in the cell walls of bryophytes. Phytochemistry 24:745–749CrossRefGoogle Scholar
  50. Shotyk W (1996) Peat bog archives of atmospheric metal deposition: geochemical evaluation of peat profiles, natural variations in metal concentrations, and metal enrichment factors. Environ Rev 4:149–183CrossRefGoogle Scholar
  51. Shotyk W, Weiss D, Appleby PG, Cheburkin AK, Frei R, Gllor M, Kramers JD, Reese S, Van Der Knaap WO (1998) History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281:1635–1640PubMedCrossRefGoogle Scholar
  52. Sizova MV, Panikov NS, Tourova TP, Flanagan PW (2003) Isolation and characterization of oligotrophic acido‐tolerant methanogenic consortia from a Sphagnum peat bog. FEMS Microbiol Ecol 45:301–315PubMedCrossRefGoogle Scholar
  53. Sousa DZ, Pereira MA, Smidt H, Stams AJM, Alves MM (2007) Molecular assessment of complex microbial communities degrading long chain fatty acids in methanogenic bioreactors. FEMS Microbiol Ecol 60:252–265PubMedCrossRefGoogle Scholar
  54. Steinmann P, Shotyk W (1997) Chemical composition, pH, and redox state of sulfur and iron in complete vertical porewater profiles from two Sphagnum peat bogs, Jura Mountains, Switzerland. Geochim Cosmochim Acta 61:1143–1163CrossRefGoogle Scholar
  55. Stopnisek N, Gubry-Rangin C, Hofferle S, Nicol GW, Mnadic-Mulec I, Prosser JI (2010) Thumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment. Appl Environ Microbiol 76:7626–7634PubMedCentralPubMedCrossRefGoogle Scholar
  56. Suyama Y, Gunnarsson U, Parducci L (2008) Analysis of short DNA fragments from Holocene peatmoss samples. The Holocene 18:1003–1006CrossRefGoogle Scholar
  57. Tareq SM, Tanaka N, Ohta K (2004) Biomarker signature in tropical wetland: lignin phenol vegetation index LPVI and its implications for reconstructing the paleoenvironment. Sci Total Environ 324:91–103PubMedCrossRefGoogle Scholar
  58. van Breemen N (1995) How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–275PubMedCrossRefGoogle Scholar
  59. van Geel B (1978) A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Rev Palaeobot Palynol 25:1–120CrossRefGoogle Scholar
  60. Vasileiadis S, Puglisi E, Arena M, Cappa F, Van Veen JA, Cocconcelli PS, Trevisan M (2013) Soil microbial diversity patterns of a lowland spring environment. FEMS Microbiol Ecol 86:172–184PubMedCrossRefGoogle Scholar
  61. Waksman SA (1930) Chemical composition of peat and the role of microorganisms in its formation. Am J Sci 19:32–54CrossRefGoogle Scholar
  62. Waksman SA, Stevens KR (1929) Contribution to the chemical composition of the peat: V. The role of microorganisms in peat formation and peat decomposition. Soil Sci 28:315–340CrossRefGoogle Scholar
  63. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267PubMedCentralPubMedCrossRefGoogle Scholar
  64. Wardenaar E (1987) A new hand tool for cutting peat profiles. Can J Bot 65:1772–1773CrossRefGoogle Scholar
  65. Woillard GM (1978) Grande Pile peat bog: a continuous pollen record for the last 140,000 years. Quat Res 9:1–21CrossRefGoogle Scholar
  66. Wright ES, Safak Yilmaz L, Noguera DR (2011) DECIPHER: a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78:717–725PubMedCrossRefGoogle Scholar
  67. Zaccone C, Cocozza C, Cheburkin A, Shotyk W, Miano TM (2007a) Highly organic soils as “witnesses” of anthropogenic Pb, Cu, Zn, and 137Cs inputs during centuries. Water Air Soil Pollut 186:263–271CrossRefGoogle Scholar
  68. Zaccone C, Miano TM, Shotyk W (2007b) Qualitative comparison between raw peat and related humic acids in an ombrotrophic bog profile. Org Geochem 38:151–160CrossRefGoogle Scholar
  69. Zaccone C, Said-Pullicino D, Gigliotti G, Miano TM (2008) Diagenetic trends in the phenolic constituents of Sphagnum-dominated peat and its corresponding humic acid fraction. Org Geochem 39:830–838CrossRefGoogle Scholar
  70. Zaccone C, D'Orazio V, Shotyk W, Miano TM (2009a) Chemical and spectroscopic investigation of porewater and aqueous extracts of corresponding peat samples throughout a bog core (Jura Mountains, Switzerland). J Soil Sediment 9:443–456CrossRefGoogle Scholar
  71. Zaccone C, Gallipoli A, Cocozza C, Trevisan M, Miano TM (2009b) Distribution patterns of selected PAHs in bulk peat and corresponding humic acids from a Swiss ombrotrophic bog profile. Plant Soil 315:35–45CrossRefGoogle Scholar
  72. Zaccone C, Casiello G, Longobardi F, Bragazza L, Sacco A, Miano TM (2011) Evaluating the 'conservative' behavior of stable isotopic ratios (δ13C, δ15N, and δ18O) in humic acids and their reliability as paleoenvironmental proxies along a peat sequence. Chem Geol 285:124–132CrossRefGoogle Scholar
  73. Zaccone C, Miano TM, Shotyk W (2012) Interpreting the ash trend within ombrotrophic bog profiles: atmospheric dust depositions vs. mineralization processes. The Etang de la Gruère case study. Plant Soil 353:1–9CrossRefGoogle Scholar
  74. Zadorina EV, Slobodova NV, Boulygina ES, Kolganova TV, Kravchenko IK, Kuznetsov BB (2009) Analysis of the diversity of diazotrophic bacteria in peat soil by cloning of the nifH gene. Microbiology 78:218–226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Edoardo Puglisi
    • 1
  • Claudio Zaccone
    • 2
    • 3
  • Fabrizio Cappa
    • 1
  • Pier Sandro Cocconcelli
    • 1
  • William Shotyk
    • 3
  • Marco Trevisan
    • 4
    Email author
  • Teodoro M. Miano
    • 5
  1. 1.Istituto di MicrobiologiaUniversità Cattolica del Sacro CuorePiacenzaItaly
  2. 2.Department of the Sciences of Agriculture, Food and EnvironmentUniversity of FoggiaFoggiaItaly
  3. 3.Department of Renewable ResourcesUniversity of AlbertaEdmontonCanada
  4. 4.Istituto di Chimica Agraria ed AmbientaleUniversità Cattolica del Sacro CuorePiacenzaItaly
  5. 5.Department of Soil, Plant and Food SciencesUniversity of Bari “Aldo Moro”BariItaly

Personalised recommendations