Advertisement

Biology and Fertility of Soils

, Volume 50, Issue 5, pp 795–807 | Cite as

Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on abundance and activity of ammonia oxidizers in soil

  • Alessandro FlorioEmail author
  • Ian M. Clark
  • Penny R. Hirsch
  • Deveraj Jhurreea
  • Anna Benedetti
Original Paper

Abstract

Recent evidence from several environments suggest that besides autotrophic ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) are also able to perform the oxidation of NH4 + to NO2 , although the relative importance of AOA in nitrification, compared to AOB, and their differential susceptibility to inhibitory compounds remains unclear. Experimental microcosms were set up to evaluate the effect of the addition of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) combined with a cattle effluent as organic fertilizer on the abundance and expression of ammonia oxidizers, denitrifiers, and non-target microbial populations using reverse transcription–real-time PCR, as well as on the diversity of metabolically active soil bacterial and archaeal communities by terminal restriction fragment length polymorphism. While no significant changes in soil mineral N concentrations or amoA gene copies could be detected between treatments, short-term changes in transcriptional activity revealed that DMPP impaired both bacterial and archaeal amoA mRNA, being significant at every time point for AOB and at one time point for AOA. Our findings revealed that, despite the different cellular biochemistry and metabolism existing between bacteria and archaea domains, DMPP exerts its inhibitory effect against both soil bacterial and archaeal ammonia-oxidizing transcriptional activity.

Keywords

3,4-dimethylpyrazole phosphate (DMPP) Nitrification inhibitor Ammonia oxidizers Soil Cattle effluent 

Notes

Acknowledgments

A.F. is funded by a Ph.D. fellowship from EuroChem Agro Spa, Italy, and Timac Agro Italia. The authors would like to thank Dr. Giovanni Mughini and the CRA-PLF (Rome) for providing soil samples. The authors have no conflict of interest to declare.

References

  1. Barth G, von Tucher S, Schmidhalter U (2008) Effectiveness of 3,4-dimethylpyrazole phosphate as nitrification inhibitor in soil as influenced by inhibitor concentration, application form, and soil matric potential. Pedosphere 18:378–385CrossRefGoogle Scholar
  2. Benedetti A, Alianiello F, Dell’Abate MT (1994) A modified Stanford and Smith method for the study of the mineralization of nitrogen from organic materials. In: Neetson JJ, Hassink J (eds) Nitrogen mineralization in agricultural soils. AB-DLO, HarenGoogle Scholar
  3. Bock E, Wagner M (2006) Oxidation of inorganic nitrogen compounds as an energy source. In: Dworkin M (ed) The Prokaryotes. Springer, New York, pp 457–495CrossRefGoogle Scholar
  4. Brandt BW, Kelpin FDL, van Leeuwen IMM, Kooijman SALM (2004) Modelling microbial adaptation to changing availability of substrates. Water Res 38:1003–1013PubMedCrossRefGoogle Scholar
  5. Bronson KF, Mosier AR (1994) Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors. Biol Fertil Soils 17:263–268CrossRefGoogle Scholar
  6. Ceccherini MT, Castaldini M, Piovanelli C, Hastings RC, McCarthy AJ (1998) Effects of swine manure fertilization on autotrophic ammonia-oxidizing bacteria in soil. Appl Soil Ecol 7:149–157CrossRefGoogle Scholar
  7. Chen D, Helen CS, Islam A, Edis R (2010) Influence of nitrification inhibitors on nitrification and nitrous oxide (N2O) emission from a clay loam soil fertilized with urea. Soil Biol Biochem 42:660–664CrossRefGoogle Scholar
  8. Clark IM, Buchkina N, Jhurreea D, Goulding KWT, Hirsch PR (2012) Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the Broadbalk wheat experiment. Phil Trans R Soc B 367:1235–1244PubMedCentralPubMedCrossRefGoogle Scholar
  9. Dambreville C, Hallet S, Nguyen C, Morvan T, Germon JC, Philippot L (2006) Structure and activity of the denitrifying community in a maize-cropped field fertilized with composted pig manure or ammonium nitrate. FEMS Microbiol Ecol 56:119–131PubMedCrossRefGoogle Scholar
  10. Dell’Abate MT, Benedetti A, Trinchera A, Galluzzo D (2003) Nitrogen and carbon mineralisation of leather meal in soil as affected by particle size of fertiliser and microbiological activity of soil. Biol Fertil Soils 37:124–129Google Scholar
  11. Di HJ, Cameron KC (2004) Effects of temperature and application rate of a nitrification inhibitor, dicyandiamide (DCD), on nitrification rate and microbial biomass in a grazed pasture soil. Aust J Soil Res 42:927–932CrossRefGoogle Scholar
  12. Di HJ, Cameron KC (2012) How does the application of different nitrification inhibitors affect nitrous oxide emissions and nitrate leaching from cow urine in grazed pastures? Soil Use Manag 28:54–61CrossRefGoogle Scholar
  13. Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ (2010) Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol 72:386–394PubMedCrossRefGoogle Scholar
  14. Dittert K, Bol R, King B, Chadwick D, Hatch D (2001) Use of a novel nitrification inhibitor to reduce nitrous oxide emission from 15 N-labelled dairy slurry injected into soil. Rapid Commun Mass Spectrom 15:1291–1296PubMedCrossRefGoogle Scholar
  15. Dosch P, Gutser R (1996) Reducing N losses (NH3, N2O, N2) and immobilization from slurry through optimized application techniques. Fert Res 43:165–171CrossRefGoogle Scholar
  16. Dunbar J, Ticknor LO, Kuske CR (2001) Phylogenetic specificity and reproducibility and a new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl Environ Microbiol 67:190–197PubMedCentralPubMedCrossRefGoogle Scholar
  17. Felske A, Akkermans ADL (1998) Spatial homogeneity of abundant bacterial 16S rRNA molecules in grassland soil. Microb Ecol 36:31–36PubMedCrossRefGoogle Scholar
  18. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688PubMedCentralPubMedCrossRefGoogle Scholar
  19. Grisi B, Grace C, Brookes PC, Benedetti A, Dell’Abate MT (1998) Temperature effect on organic matter and microbial biomass dynamics in temperate and tropical soils. Soil Biol Biochem 30:1309–1315CrossRefGoogle Scholar
  20. Hai B, Diallo NH, Sall S, Haesler F, Schauss K (2009) Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl Environ Microbiol 75:4993–5000PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hatch D, Trindade H, Cardenas L, Carneiro J, Hawkins J, Scholefield D, Chadwick D (2005) Laboratory study of the effects of two nitrification inhibitors on greenhouse gas emissions from slurry-treated arable soil: impact of diurnal temperature cycle. Biol Fertil Soils 41:225–232CrossRefGoogle Scholar
  22. Hauben L, Vauterin L, Swings J, Moore ERB (1997) Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. Int J Sys Bacteriol 47:328–335CrossRefGoogle Scholar
  23. Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35:1–21PubMedCrossRefGoogle Scholar
  24. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994PubMedCrossRefGoogle Scholar
  25. Henry S, Baudoinb E, López-Gutiérrez JC, Fabrice M-L, Braumanb A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods 59:327–335PubMedCrossRefGoogle Scholar
  26. Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189PubMedCentralPubMedCrossRefGoogle Scholar
  27. Irigoyen I, Muro J, Azpilikueta M, Aparicio-Tejo P, Lamsfus C (2003) Ammonium oxidation kinetics in the presence of nitrification inhibitors DCD and DMPP at various temperatures. Aust J Soil Res 41:1177–1183CrossRefGoogle Scholar
  28. Isermayer H (1952) Estimation of soil respiration in closed jars. In: Alef K, Nannipieri P (eds) Method in applied soil microbiology and biochemistry. Academy, London, pp 214–216Google Scholar
  29. Jarvis SC, Stockdale EA, Shepherd MA, Powlson DS (1996) Nitrogen mineralization in temperate agricultural soils: processes and measurement. Adv Agron 57:187–235CrossRefGoogle Scholar
  30. Jurgens G, Lindstrom K, Saano A (1997) Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl Environ Microbiol 63:3233–3241Google Scholar
  31. Kamshake LJ, Hannah SA, Comen JM (1967) Automated analysis for nitrate by hydrazine reduction. Water Resour 1:205–216Google Scholar
  32. Kleineidam K, Košmrlj K, Kublik S, Palmer I, Pfab H, Ruser R, Fiedler S, Schloter M (2011) Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on ammonia-oxidizing bacteria and archaea in rhizosphere and bulk soil. Chemosphere 84:182–186PubMedCrossRefGoogle Scholar
  33. Kramer SB, Reganold JP, Glover JD, Bohannan BJ, Mooney HA (2006) Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proc Natl Acad Sci U S A 103:4522–4527PubMedCentralPubMedCrossRefGoogle Scholar
  34. Leininger S, Urich T, Sclotter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soil. Nature 442:806–809PubMedCrossRefGoogle Scholar
  35. Li H, Liang X, Chen Y, Lian Y, Tian G, Ni W (2008) Effect of nitrification inhibitor DMPP on nitrogen leaching, nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system. J Environ Sci 20:149–155CrossRefGoogle Scholar
  36. Linzmeier W, Gutser R, Schmidhalter U (2001) Nitrous oxide emission from soil and from a nitrogen-15-labelled fertilizer with the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP). Biol Fertil Soils 34:103–108CrossRefGoogle Scholar
  37. Macadam XMB, del Prado A, Merino P, Estavillo JM, Pinto M, Gonzales-Murua C (2003) Dicyandiamide and 3,4-dimethyl pyrazole phosphate decrease N2O emissions from grassland but dicyandiamide produces deleterious effects on clover. J Plant Physiol 160:1517–1523PubMedCrossRefGoogle Scholar
  38. Macdonald CA, Singh BK, Peck JA, van Schaik AP, Hunter LC, Horswell J, Campbell CD, Speir TW (2007) Long-term exposure to Zn-spiked sewage sludge alters soil community structure. Soil Biol Biochem 39:2576–2586CrossRefGoogle Scholar
  39. Macdonald CA, Clark IM, Zhaoa FG, Hirsch PR, Singh BK, McGrath SP (2011) Long-term impacts of zinc and copper enriched sewage sludge additions on bacterial, archaeal and fungal communities in arable and grassland soils. Soil Biol Biochem 43:932–941CrossRefGoogle Scholar
  40. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium specific PCR primers that amplify genes coding for bacterial 16SrRNA. Appl Environ Microbiol 64:795–799PubMedCentralPubMedGoogle Scholar
  41. Martínez-Alcántara B, Quiñones A, Polo C, Primo-Millo E, Legaz F (2012) Use of nitrification inhibitor DMPP to improve nitrogen uptake efficiency in citrus trees. J Agric Sci 5:1–18Google Scholar
  42. Menéndez S, Barrena I, Setien I, González-Murua C, Estavillo JM (2012) Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions. Soil Biol Biochem 53:82–89CrossRefGoogle Scholar
  43. Merino P, Menéndez S, Pinto M, Gonzàlez-Murua C, Estavillo JM (2005) 3,4-dimethyl pyrazole phosphate reduces nitrous oxide emissions from grassland after slurry application. Soil Use Manag 21:53–57CrossRefGoogle Scholar
  44. Mertens J, Broos K, Wakelin SA, Kowalchuk GA, Springael D, Smolders E (2009) Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. ISME J 3:916–923PubMedCrossRefGoogle Scholar
  45. Michotey V, Mejean V, Bonin P (2000) Comparison of methods for quantification of cytochrome cd1-denitrifying bacteria in environmental marine samples. Appl Environ Microbiol 66:1564–1571PubMedCentralPubMedCrossRefGoogle Scholar
  46. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141PubMedCrossRefGoogle Scholar
  47. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700Google Scholar
  48. Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266PubMedGoogle Scholar
  49. Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978PubMedCrossRefGoogle Scholar
  50. O’Callaghan M, Gerard EM, Carter PE, Lardner R, Sarathchandra U, Burch G, Ghani A, Bell N (2010) Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine. Soil Biol Biochem 42:1425–1436CrossRefGoogle Scholar
  51. Pasda G, Hähndel R, Zerulla W (2001) Effect of fertilizers with the new nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on yield and quality of agricultural and horticultural crops. Biol Fertil Soils 34:85–97CrossRefGoogle Scholar
  52. Pereira J, Fanguiero D, Chadwick DR, Misselbrook TH, Coutinho J, Trindade H (2010) Effect of cattle slurry pre-treatment by separation and addition of nitrification inhibitors on gaseous emissions and N dynamics: a laboratory study. Chemosphere 79:620–627PubMedCrossRefGoogle Scholar
  53. Pinck C, Coeur C, Potier P, Bock E (2001) Polyclonal antibodies recognizing the AmoB protein of ammonia oxidizers of the beta-subclass of the class Proteobacteria. Appl Environ Microbiol 67:118–124PubMedCentralPubMedCrossRefGoogle Scholar
  54. Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941PubMedCrossRefGoogle Scholar
  55. Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption–free analysis of quantitative real-time polymerse chain reaction (PCR) data. Neurosci Lett 339:62–66PubMedCrossRefGoogle Scholar
  56. Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S RNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240PubMedCentralPubMedGoogle Scholar
  57. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712PubMedCentralPubMedGoogle Scholar
  58. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker Q, van den Hoff MJB, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:1–12CrossRefGoogle Scholar
  59. Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thiele-Bruhn S, Sharma S, Wilke BM, Matthies M, Smalla K, Munch JC, Amelung W, Kaupenjohann M, Schloter M, Schleper C (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11:446–456PubMedCrossRefGoogle Scholar
  60. Schlegel HG (1992) Allgemeine mikrobiologie, 7th edn. Thieme Verlag, StuttgartGoogle Scholar
  61. Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 18:331–340PubMedCrossRefGoogle Scholar
  62. Springer U, Klee J (1954) Pr_fung der Leistungsf_higkeit von einigen wichtigeren Verfahren zur Bestimmung des Kohlemstoffs mittels Chromschwefels_ure sowie Vorschlag einer neuen Schnellmethode. Z Pflanzenernaehr Dueng Bodenkd 64:1–7CrossRefGoogle Scholar
  63. Stanford G, Smith SJ (1972) Nitrogen mineralization potentials of soils. Soil Sci Soc Am Proc 36:465–472CrossRefGoogle Scholar
  64. Subbarao GV, Ito O, Sahrawat K, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM (2006) Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Crit Rev Plant Sci 25:303–335CrossRefGoogle Scholar
  65. Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630PubMedCentralPubMedGoogle Scholar
  66. Throbäck IN, Enwall K, Jarvis Ǻ, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417PubMedCrossRefGoogle Scholar
  67. Töwe S, Kleineidam K, Schloter M (2010) Differences in amplification efficiency of standard curves in quantitative real-time PCR assays and consequences for gene quantification in environmental samples. J Microbiol Methods 82:338–341PubMedCrossRefGoogle Scholar
  68. Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995PubMedCrossRefGoogle Scholar
  69. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring microbial biomass C. Soil Biol Biochem 19:703–707CrossRefGoogle Scholar
  70. Violante P (2000) Metodi di Analisi Chimica del Suolo. Angeli, MilanGoogle Scholar
  71. Wall L, Gehrke CW, Neuner JE, Lathey RD, Rexnord PR (1975) Cereal protein nitrogen: evolution and comparison of four different methods. Assoc Off Anal Chem 58:811–817Google Scholar
  72. Weiske A, Benckiser G, Herbert T, Ottow J (2001) Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol Fertil Soils 34:109–117CrossRefGoogle Scholar
  73. Wulf S, Maeting M, Clemens J (2002) Application technique and slurry co-fermentation effects on ammonia nitrous oxide, and methane emissions after spreading: II. Greenhouse gas emissions. J Environ Qual 31:1795–1801PubMedCrossRefGoogle Scholar
  74. Yang J, Li X, Xu L, Hu F, Li H, Liu M (2013) Influence of the nitrification inhibitor DMPP on the community composition of ammonia-oxidizing bacteria at microsites with increasing distance from the fertilizer zone. Biol Fertil Soils 49:23–30CrossRefGoogle Scholar
  75. Zerulla W, Barth T, Dressel J, Erhardt K, von Locquenghien KH, Pasda G, Rädle M, Wissemeier AH (2001) 3,4-Dimethylpyrazole phosphate (DMPP)—a new nitrification inhibitor for agriculture and horticulture. Biol Fertil Soils 34:79–84CrossRefGoogle Scholar
  76. Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. The ISME J 6:1032–1045CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alessandro Florio
    • 1
    Email author
  • Ian M. Clark
    • 2
  • Penny R. Hirsch
    • 2
  • Deveraj Jhurreea
    • 2
  • Anna Benedetti
    • 1
  1. 1.Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo (CRA-RPS)RomeItaly
  2. 2.Rothamsted ResearchHarpendenUK

Personalised recommendations