Biology and Fertility of Soils

, Volume 50, Issue 2, pp 217–224 | Cite as

De-coupling of root–microbiome associations followed by antagonist inoculation improves rhizosphere soil suppressiveness

  • Meihua Qiu
  • Shuqing Li
  • Xuan Zhou
  • Xiaoshuang Cui
  • Jorge M. Vivanco
  • Nan Zhang
  • Qirong Shen
  • Ruifu Zhang
Original Paper


It was hypothesized that disruption of the root–microbiome association creates empty rhizosphere niches that could be filled by both soilborne pathogens and beneficial microbes. The effect of de-coupling root–microbiome associations related to improve soil suppressiveness was investigated in cucumber using the pathogen Fusarium oxysporum f. sp. Cucumerinum (FOC) and its antagonist Bacillus amyloliquefaciens SQR9 (SQR9) system. The root–soil microbiome association of cucumber was disrupted by applying the fungicide carbendazim to the soil, and then FOC or/and its antagonist SQR9 were inoculated in the rhizosphere. In the fungicide treatment, the FOC wilt disease incidence was significantly increased by 13.3 % on average compared to the FOC treatment without fungicide. However, when the fungicide treatment was applied to the soil with SQR9 and FOC, the SQR9 effectively reduced the disease incidence, and improved cucumber plant growth compared to a no fungicide control. These results indicate that de-coupling of root–microbiome associations followed by antagonist inoculation can improve rhizosphere soil suppressiveness, which may help to develop strategies for efficient application of rhizosphere beneficial microbes in agriculture.


Root–microbiome association Rhizosphere niche Soil suppressiveness Fusarium wilt 



This research was financially supported by the Chinese Ministry of Science and Technology (2013AA100802) and the National Natural Science Foundation of China (41271271). RZ and QS were also supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions. JMV was supported by a grant from the National Science Foundation (MCB-0950857). RZ, QR, and JMV are part of the 111 Project (B12009).

Supplementary material

374_2013_835_MOESM1_ESM.doc (3.9 mb)
ESM 1 (DOC 3988 kb)


  1. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681PubMedCrossRefGoogle Scholar
  2. Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotech 20(6):642–650PubMedCrossRefGoogle Scholar
  3. Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13CrossRefGoogle Scholar
  4. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486PubMedCrossRefGoogle Scholar
  5. Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotech 84:11–18CrossRefGoogle Scholar
  6. Berg G, Opelt K, Zachow C, Lottmann J, Gotz M, Costa R, Smalla K (2006) The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol Ecol 56:250–261PubMedCrossRefGoogle Scholar
  7. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13PubMedCrossRefGoogle Scholar
  8. Bever JD, Platt TG, Morton ER (2012) Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 66:265–283PubMedCentralPubMedCrossRefGoogle Scholar
  9. Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744PubMedCentralPubMedCrossRefGoogle Scholar
  10. Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95PubMedCrossRefGoogle Scholar
  11. Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, Shen Q (2011) Bacillus subtilis SQR9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils 47:495–506CrossRefGoogle Scholar
  12. Case TJ (1983) Niche overlap and the assembly of island lizard communities. Oikos 41:427–433CrossRefGoogle Scholar
  13. Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499CrossRefGoogle Scholar
  14. Chen L, Huang X, Zhang F, Zhao D, Yang X, Shen Q (2012) Application of Trichoderma harzianum SQR-T037 bio-organic fertilizer significantly controls Fusarium wilt and affects the microbial communities of continuously cropped soil of cucumber. J Sci Food Agric 92:2465–2470PubMedCrossRefGoogle Scholar
  15. Crowder DW, Northfield TD, Strand MR, Snyder WE (2010) Organic agriculture promotes evenness and natural pest control. Nature 466:109–112PubMedCrossRefGoogle Scholar
  16. Diamond JM (1975) Assembly of species communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, MA, pp 342–444Google Scholar
  17. De Ridder-Duine AS, Kowalchuk GA, Klein Gunnewied PJA, Smant W, van Veen JA, de Boer W (2005) Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol Biochem 37:349–357CrossRefGoogle Scholar
  18. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  19. Duffy B, Keel C, Defago G (2004) Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Appl Environ Microbiol 70:1836–1842PubMedCentralPubMedCrossRefGoogle Scholar
  20. Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9PubMedGoogle Scholar
  21. Fliessbach A, Winkler ME, Lutz MP, Oberholzer H, Mäder P (2009) Soil amendment with Pseudomonas fluorescens CHA0: lasting effects on soil biological properties in soils low in microbial biomass and activity. Microb Ecol 57:611–623PubMedCrossRefGoogle Scholar
  22. Gao G, Yin D, Chen S, Xia F, Yang J, Li Q, Wang W (2012) Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE. PLoS One 7:e31806. doi: 10.1371/journal.pone.0031806 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Gao X, Jackson TA, Lambert KN, Li S, Hartman GL, Niblack TL (2004) Detection and quantification of Fusarium solani f. sp. glycines in soybean roots with real-time quantitative polymerase chain reaction. Plant Dis 88:1372–1380CrossRefGoogle Scholar
  24. Garbeva P, van Elsas JD, van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302:19–32CrossRefGoogle Scholar
  25. Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14CrossRefGoogle Scholar
  26. Hermansson A, Backman JSK, Svensson BH, Lindgren PE (2004) Quantification of ammonia-oxidising bacteria in limed and non-limed acidic coniferous forest soil using real-time PCR. Soil Biol Biochem 36:1935–1941CrossRefGoogle Scholar
  27. Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520PubMedCrossRefGoogle Scholar
  28. Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59–78Google Scholar
  29. Ibekwe AM, Kennedy AC, Frohne PS, Papiernik SK, Yang CH, Crowley DE (2002) Microbial diversity along a transect of agronomic zones. FEMS Microbiol Ecol 39:183–191PubMedCrossRefGoogle Scholar
  30. Jørgensen C, Leser TD (2007) Estimating amplification efficiency improves multiplex real-time PCR quantification of Bacillus licheniformis and Bacillus subtilis spores in animal feed. J Microbiol Meth 68:588–595CrossRefGoogle Scholar
  31. Klein E, Ofek M, Katan J, Minz D, Gamliel A (2013) Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization. Phytopathology 103:23–33PubMedCrossRefGoogle Scholar
  32. Larkin RP, Honeycutt CW (2006) Effects of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato. Phytopathology 96:68–79PubMedCrossRefGoogle Scholar
  33. Li S, Zhang N, Zhang Z, Luo J, Shen B, Zhang R, Shen Q (2013) Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biol Fertil Soils 49:295–303CrossRefGoogle Scholar
  34. Lievens B, Claes L, Vakalounakis DJ, Vanachter ACRC, Thomma BPHJ (2007) A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f. sp. cucumerinum and f. sp. radicis-cucumerinum. Environ Microbiol 9:2145–2161PubMedCrossRefGoogle Scholar
  35. Ling N, Xue C, Huang Q, Yang X, Xu Y, Shen Q (2010) Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. BioControl 55:673–683CrossRefGoogle Scholar
  36. Lugtenberg B, Chin-A-Woeng T, Bloemberg G (2002) Microbe-plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383PubMedCrossRefGoogle Scholar
  37. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90PubMedCrossRefGoogle Scholar
  38. Marx J (2004) The roots of plant-microbe collaborations. Science 304:234–236PubMedCrossRefGoogle Scholar
  39. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100PubMedCrossRefGoogle Scholar
  40. Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739PubMedCrossRefGoogle Scholar
  41. Morrissey JP, Dow JM, Mark GL, O’Gara F (2004) Are microbes at the root of a solution to world food production? EMBO Rep 5:922–926PubMedCentralPubMedCrossRefGoogle Scholar
  42. Nannipieri P, Ascher J, Ceccherini MT, Guerri G, Renella G, Pietramellara G (2008a) Recent advances in functional genomics and proteomics of plant associated microbes. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, Heidelberg, Germany, pp 215–241CrossRefGoogle Scholar
  43. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G, Valori F (2008b) Effects of root exudates on microbial diversity and activity in rhizosphere soils. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, Heidelberg, Germany, pp 339–365CrossRefGoogle Scholar
  44. Peters RD, Sturz AV, Carter MR, Sanderson JB (2003) Developing disease-suppressive soils through crop rotation and tillage management practices. Soil Till Res 72:181–192CrossRefGoogle Scholar
  45. Postma-Blaauw MB, de Goede RGM, Bloem J, Faber JH, Brussaard L (2010) Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91:460–473PubMedCrossRefGoogle Scholar
  46. Postma J, Schilder MT, Bloem J, van Leeumen-Haagsma WK (2008) Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biol Biochem 40:2394–2406CrossRefGoogle Scholar
  47. Qiu M, Zhang R, Xue C, Zhang S, Li S, Zhang N, Shen Q (2012) Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biol Fertil Soils 48:807–816CrossRefGoogle Scholar
  48. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361CrossRefGoogle Scholar
  49. Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 205–224CrossRefGoogle Scholar
  50. Stachowicz JJ, Tilman D (2005) Species invasions and the relationships between species diversity, community saturation, and ecosystem functions. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution, and biogeography. Sinauer Sunderland, MA, pp 41–64Google Scholar
  51. Sugiyama A, Vivanco JM, Jayanty SS, Manter DK (2010) Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms. Plant Dis 94:1329–1335CrossRefGoogle Scholar
  52. van Bruggena AHC, Semenovb AM (2000) In search of biological indicators for soil health and disease suppression. Appl Soil Ecol 15:13–24CrossRefGoogle Scholar
  53. Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348PubMedCrossRefGoogle Scholar
  54. Weng J, Wang Y, Li J, Shen Q, Zhang R (2013) Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption. Appl Microbiol Biotech. doi: 10.1007/s00253-012-4572-4 Google Scholar
  55. Xu Z, Shao J, Li B, Yan X, Shen Q, Zhang R (2013) Bacillomycin D in Bacillus amyloliquefaciens SQR9 contributes to antifungal activity and biofilm formation. Appl Environ Microbiol 79:808–815PubMedCentralPubMedCrossRefGoogle Scholar
  56. Yao H, Wu F (2010) Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to Fusarium wilt. FEMS Microbiol Ecol 72:456–463PubMedCrossRefGoogle Scholar
  57. Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe In 25:139–150CrossRefGoogle Scholar
  58. Zhang S, Raza W, Yang X, Hu J, Huang Q, Xu Y, Liu X, Ran W, Shen Q (2008) Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fertil Soils 44:1073–1080CrossRefGoogle Scholar
  59. Zhao Q, Dong C, Yang X, Mei X, Ran W, Shen Q, Xu Y (2011) Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer. Appl Soil Ecol 47:67–75CrossRefGoogle Scholar
  60. Zhou X, Wu F (2012a) Dynamics of the diversity of fungal and Fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiol Ecol 80:469–478PubMedCrossRefGoogle Scholar
  61. Zhou X, Wu F (2012b) p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.sp. cucumerinum Owen. PLoS One 7:e48288PubMedCentralPubMedCrossRefGoogle Scholar
  62. Zhou X, Yu G, Wu F (2012) Responses of soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.) to exogenously applied p-hydroxybenzoic acid. J Chem Ecol 38:975–983PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Meihua Qiu
    • 1
    • 2
  • Shuqing Li
    • 1
    • 2
  • Xuan Zhou
    • 1
    • 2
  • Xiaoshuang Cui
    • 1
    • 2
  • Jorge M. Vivanco
    • 3
    • 4
  • Nan Zhang
    • 1
    • 2
  • Qirong Shen
    • 1
    • 2
  • Ruifu Zhang
    • 1
    • 2
  1. 1.Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjingPeople’s Republic of China
  2. 2.Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, College of Resources and Environmental ScienceNanjing Agricultural UniversityNanjingPeople’s Republic of China
  3. 3.Center for Rhizosphere BiologyColorado State UniversityFort CollinsUSA
  4. 4.Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsUSA

Personalised recommendations