Biology and Fertility of Soils

, Volume 48, Issue 6, pp 709–725 | Cite as

Are humus forms, mesofauna and microflora in subalpine forest soils sensitive to thermal conditions?

  • J. Ascher
  • G. Sartori
  • U. Graefe
  • B. Thornton
  • M. T. Ceccherini
  • G. Pietramellara
  • M. Egli
Original Paper

Abstract

This study focuses on the biological and morphological development of humus profiles in forested Italian Alpine soils as a function of climate. Humus form description, systematic investigation of microannelid communities and polyphasic biochemical fingerprinting of soil microbial communities (denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid analysis (PLFA)) were performed to compare sites differing in mean annual temperature due to different altitude and exposure. Although the soil biota showed complex responses, several differences in soil biological properties seem to be due to thermal differences. Although soil acidity also determines biological properties, it is not a state factor but rather influenced by them. The thickness of the organic layer and the acidification of the subjacent mineral horizon increased under cooler conditions (north-exposure; higher altitude), whereas the thickness of the A horizon inversely decreased. Species richness of microannelid assemblages was higher under warmer conditions (south-exposure; lower altitude) and the vertical distribution of microannelids shifted along the gradient to lower temperatures from predominant occurrence in the mineral soil to exclusive occurrence in the organic layer. Microbial biomass (total PLFA) was higher at the cooler sites; the prevalence of Gram-negative bacteria could be ascribed to their better adaptation to lower temperature, pH and nutrient contents. The δ13C signatures of the PLFA markers suggested a lower decomposition rate at the cooler sites, resulting in a lower respiratory loss and an accumulation of weakly decomposed organic material. DGGE data supported the PLFA results. Both parameters reflected the expected thermal sequence. This multidisciplinary case study provided indications of an association of climate, mesofauna and microbiota using the humus form as an overall link. More data are however needed and further investigations are encouraged.

Keywords

Subalpine forest soils Humus forms Climate Microannelids Microbial community Microbial biomass 

Notes

Acknowledgments

This research was supported by a grant from the Ministero delle Politiche Agricole e Forestali (Roma, Italia; project: MEPESA).

References

  1. Ad-hoc-AG-Boden (2005) Bodenkundliche Kartieranleitung – 5 (KA5). Auflage. Hannover, GermanyGoogle Scholar
  2. Agnelli A, Ascher J, Corti G, Ceccherini MT, Pietramellara G, Nannipieri P (2007) Purification and isotopic signatures (δ13C, δ15N, ∆14C) of soil extracellular DNA. Biol Fertil Soils 44:353–361CrossRefGoogle Scholar
  3. Andreetta A, Macci C, Ceccherini MT, Cecchini G, Masciandaro G, Pietramellara G, Carnicelli S (2011) Microbial dynamics in Mediterranean Moder humus. Biol Fertil Soils. doi: 10.1007/s00374-011-0622-9
  4. Ascher J, Ceccherini MT, Landi L, Mench M, Pietramellara G, Nannipieri P, Renella G (2009a) Composition, biomass and activity of microflora, and leaf yields and foliar elemental concentrations of lettuce, after in situ stabilization of an arsenic-contaminated soil. Appl Soil Ecol 41:351–359CrossRefGoogle Scholar
  5. Ascher J, Ceccherini MT, Pantani OL, Agnelli A, Borgogni F, Guerri G, Nannipieri P, Pietramellara G (2009b) Sequential extraction and genetic fingerprinting of a forest soil metagenome. Appl Soil Ecol 42:176–181CrossRefGoogle Scholar
  6. Ascher J, Ceccherini MT, Chroňáková A, Jirout J, Borgogni F, Elhottová D, Šimek M, Pietramellara G (2010) Evaluation of the denaturing gradient gel electrophoresis (DGGE)—apparatus as a parameter influencing soil microbial community fingerprinting. World J Microb Biot 26:1721–1726CrossRefGoogle Scholar
  7. Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, OxfordGoogle Scholar
  8. Beylich A, Graefe U (2009) Investigations of annelids at soil monitoring sites in Northern Germany: reference ranges and time-series data. Soil Organisms 81:175–196Google Scholar
  9. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Physiol Pharm 37:911–917CrossRefGoogle Scholar
  10. Bonifacio E, Falsone G, Petrillo M (2011) Humus forms, organic matter stocks and carbon fractions in forest soils of northwestern Italy. Biol Fertil Soils 47:555–566CrossRefGoogle Scholar
  11. Boström B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98PubMedCrossRefGoogle Scholar
  12. Budge K, Leifeld J, Egli M, Fuhrer J (2011) Soil microbial communities in (sub)alpine grasslands indicate a moderate shift towards new environmental conditions 11 years after warming. Soil Biol Biochem 43:1148–1154CrossRefGoogle Scholar
  13. Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Chang 59:1–4CrossRefGoogle Scholar
  14. Didden WAM, Fründ HC, Graefe U (1997) Enchytraeids. In: Benckiser G (ed) Fauna in soil ecosystems. Recycling processes, nutrient fluxes, and agricultural production. Marcel Dekker, New York, pp 135–172Google Scholar
  15. Douterelo I, Goulder R, Lillie M (2010) Soil microbial community response to land management and depth, related to the degradation of organic matter in English wetlands: implications for the in situ preservation of archaeological remains. Appl Soil Ecol 44:219–227CrossRefGoogle Scholar
  16. Dunger W, Fiedler HJ (1989) Methoden der Bodenbiologie. Gustav Fischer, StuttgartGoogle Scholar
  17. Egli M, Mirabella A, Sartori G, Giaccai D, Zanelli R, Plötze M (2007) Effect of slope aspect on transformation of clay minerals in Alpine soils. Clay Miner 42:375–401CrossRefGoogle Scholar
  18. Egli M, Sartori G, Mirabella A, Favilli F, Giaccai D, Delbos E (2009) Effect of north and south exposure on organic matter in high Alpine soils. Geoderma 149:124–136CrossRefGoogle Scholar
  19. Egli M, Sartori G, Mirabella A, Giaccai D, Favilli F, Scherrer D, Krebs R, Delbos E (2010a) The influence of weathering and organic matter on heavy metals lability in silicatic, Alpine soils. Sci Total Environ 408:931–946PubMedCrossRefGoogle Scholar
  20. Egli M, Sartori G, Mirabella A (2010b) The effects of exposure and climate on the weathering of late Pleistocene and Holocene Alpine soils. Geomorphology 114:466–482CrossRefGoogle Scholar
  21. Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant–soil system. Annu Rev Environ Resour 30:75–115CrossRefGoogle Scholar
  22. Favilli F, Egli M, Brandová D, Ivy-Ochs S, Kubik PW, Cherubini P, Mirabella A, Sartori G, Giaccai D, Haeberli W (2009) Combined use of relative and absolute dating techniques for detecting signals of Alpine landscape evolution during the late Pleistocene and early Holocene. Geomorphology 112:48–66CrossRefGoogle Scholar
  23. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176CrossRefGoogle Scholar
  24. Frey SD, Drijber R, Smith H, Melillo JM (2008) Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol Biochem 40:2904–2907CrossRefGoogle Scholar
  25. Galvan P, Ponge JF, Chersich S, Zanella A (2008) Humus components and soil biogenic structures in Norway spruce ecosystems. Soil Sci Soc Am J 72:548–557CrossRefGoogle Scholar
  26. Graefe U, Beylich A (2003) Critical values of soil acidification for annelid species and the decomposer community. Newsl Enchytraeidae 8:51–55Google Scholar
  27. Graefe U, Beylich A (2006) Humus forms as tool for upscaling soil biodiversity data to landscape level? Mitteilgn Dtsch Bodenkundl Gesellsch 108:6–7Google Scholar
  28. Graefe U, Schmelz RM (1999) Indicator values, strategy types and life forms of terrestrial Enchytraeidae and other microannelids. Newsl Enchytraeidae 6:59–67Google Scholar
  29. Green CT, Scow KM (2000) Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers. Hydrogeol J 8:126–141CrossRefGoogle Scholar
  30. Hagedorn F, van Hees PAW, Handa IT, Hättenschwiler S (2008) Elevated atmospheric CO2 fuels leaching of old dissolved organic matter at the alpine treeline. Global Biogeochem Cy 22:GB2004CrossRefGoogle Scholar
  31. Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturant gradients. Appl Environ Microbiol 63:3233–3241PubMedGoogle Scholar
  32. Hirsch PR, Mauchline TH, Clark IM (2010) Culture-independent molecular techniques for soil microbial ecology. Soil Biol Biochem 42:878–887CrossRefGoogle Scholar
  33. ISO 23611-3 (2007) Soil quality—sampling of soil invertebrates—Part 3: Sampling and soil extraction of enchytraeids. International Organization for Standardization; ISO 23611-3:2007, GenevaGoogle Scholar
  34. IUSS Working Group WRB (2006) World Reference Base for Soil Resources 2006. 2nd edition, World Soil Resources Reports No. 103, FAO (Food and Agriculture Organisation of the United Nations), RomeGoogle Scholar
  35. Jänsch S, Römbke J, Didden W (2005) The use of enchytraeids in ecological soil classification and assessment concepts. Ecotox Environ Safe 62:266–277CrossRefGoogle Scholar
  36. Jayasinghe BATD, Parkinson D (2008) Actinomycetes as antagonists of litter decomposer fungi. Appl Soil Ecol 38:109–118CrossRefGoogle Scholar
  37. Jenny H (1941) Factors of soil formation. McGraw-Hill, New YorkGoogle Scholar
  38. Jenny H (1980) The soil resource. Springer, New YorkCrossRefGoogle Scholar
  39. Lalanne A, Bardat J, Lalanne-Amara F, Gautrot T, Ponge JF (2008) Opposite responses of vascular plant and moss communities to changes in humus forms, as expressed by the Humus Index. J Veg Sci 19:645–652CrossRefGoogle Scholar
  40. Leidlmair A (1996) Tirol-Atlas. Eine Landeskunde in Karten, Tiroler Landesregierung—Kulturreferat, Alpina Offset, InnsbruckGoogle Scholar
  41. Mannistö MK, Tiirola M, Haggblom MM (2007) Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiol Ecol 59:452–465PubMedCrossRefGoogle Scholar
  42. Margesin R, Jud M, Tscherko D, Schinner F (2009) Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol 67:208–218PubMedCrossRefGoogle Scholar
  43. Nakatsu CH (2007) Soil microbial community analysis using denaturing gradient gel electrophoresis. Soil Sci Soc Am J 71:562–571CrossRefGoogle Scholar
  44. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670CrossRefGoogle Scholar
  45. Nemergut DR, Costello EK, Meyer AF, Pescador MY, Weintraub MN, Schmidt SK (2005) Structure and function of alpine and arctic soil microbial communities. Res Microbiol 156:775–784PubMedCrossRefGoogle Scholar
  46. Ning Y, Liu W, An Z (2006) Variation of soil ∂13C values in Xifeng loess-paleosol sequence and its paleoenvironmental implication. Chinese Sci Bull 51:1350–1354CrossRefGoogle Scholar
  47. Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643PubMedGoogle Scholar
  48. Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610PubMedCrossRefGoogle Scholar
  49. Paterson E, Osler G, Dawson LA, Gebbing T, Sim A, Ord B (2008) Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: independent of the presence of roots and mycorrhizal fungi. Soil Biol Biochem 40:1103–1113CrossRefGoogle Scholar
  50. Ponge JF (2003) Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biol Biochem 35:935–945CrossRefGoogle Scholar
  51. Ponge JF, Jabiol B, Gégout JC (2011) Geology and climate conditions affect more humus forms than forest canopies at large scale in temperate forests. Geoderma 162:187–195CrossRefGoogle Scholar
  52. Risk D, Kellman L, Moroni M (2009) Characterisation of spatial variability and patterns in tree and soil ∂13C at forested sites in eastern Canada. Isot Environ Healt S 45:220–230CrossRefGoogle Scholar
  53. Salmon S, Artuso N, Frizzera L, Zampedri R (2008) Relationships between soil fauna communities and humus forms: response to forest dynamics and solar radiation. Soil Biol Biochem 40:1707–1715CrossRefGoogle Scholar
  54. Sartori G, Mancabelli A (2009) Carta dei suoli del Trentino alla scala 1:250.000. Museo Tridentino di Scienze Naturali, TrentoGoogle Scholar
  55. Sboarina C, Cescatti A (2004) Il clima del Trentino—Distribuzione spaziale delle principali variabili climatiche. Report 33, Centro di Ecologia Alpina Monte Bondone, Trento, ItalyGoogle Scholar
  56. Schmelz RM, Collado R (2010) A guide to European terrestrial and freshwater species of Enchytraeidae (Oligochaeta). Soil Organisms 82:1–176Google Scholar
  57. Soil Survey Staff (2010) Keys to soil taxonomy, 10th edn. USDA (United States Department of Agriculture), NRCS (National Resources Conservation Service), Washington, DCGoogle Scholar
  58. Sørensen T (1948) A method of establishing groups of equal amplitude in a plant sociology based on similarity of species content and its applications to analysis of vegetation on Danish commons. Det Kong Danske Vidensk Selsk Biol Skr 5:1–34Google Scholar
  59. Stark S, Kytöviita MM, Männistö MK, Neumann AB (2008) Soil microbial and microfaunal communities and organic matter quality in reindeer winter and summer ranges in Finnish subarctic mountain birch forests. Appl Soil Ecol 40:456–464CrossRefGoogle Scholar
  60. Trigo C, Ball AS (1994) Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances? Microbiology 140:3145–3152PubMedCrossRefGoogle Scholar
  61. van Vliet PCJ (2000) Enchytraeids. In: Sumner ME (ed) Handbook of soil science. CRC, Boca Raton, pp 70–77, Section CGoogle Scholar
  62. White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62CrossRefGoogle Scholar
  63. Young IM, Crawford JW (2004) Interactions and self-organisation in the soil-microbe complex. Science 304:1634–1637PubMedCrossRefGoogle Scholar
  64. Young IM, Blanchart E, Chenu C, Dangerfield M, Fragoso C, Grimaldi M, Ingram J, Monrozier LJ (1998) The interaction of soil biota and soil structure under global change. Glob Change Biol 4:703–712CrossRefGoogle Scholar
  65. Zanella A, Jabiol B, Ponge JF, Sartori G, De Waal R, Van Delft B, Graefe U, Cools N, Katzensteiner K, Hager H, Englisch M, Brethes A, Broll G, Gobatl JM, Brun JJ, Milbert G, Kolb E, Wolf U, Frizzera L, Galvan P, Kolli R, Baritz R, Kemmerse R, Vacca A, Serra G, Banas D, Garlato A, Chersich S, Klimo E, Langohr R (2011a) European Humus Forms Reference Base. http://hal.archives-ouvertes.fr/docs/00/56/17/95/PDF/Humus_Forms_ERB_31_01_2011.pdf
  66. Zanella A, Jabiol B, Ponge JF, Sartori G, De Waal R, Van Delft B, Graefe U, Cools N, Katzensteiner K, Hager H, Englisch M (2011b) A European morpho-functional classification of humus forms. Geoderma. doi: 10.1016/j.geoderma.2011.05.016
  67. Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • J. Ascher
    • 1
  • G. Sartori
    • 2
  • U. Graefe
    • 3
  • B. Thornton
    • 4
  • M. T. Ceccherini
    • 1
  • G. Pietramellara
    • 1
  • M. Egli
    • 5
  1. 1.Department of Plant, Soil and Environmental ScienceUniversity of FlorenceFlorenceItaly
  2. 2.Museo Tridentino di Scienze NaturaliTrentoItaly
  3. 3.IFAB Institut für Angewandte Bodenbiologie GmbHHamburgGermany
  4. 4.The James Hutton InstituteAberdeenUK
  5. 5.Department of GeographyUniversity of ZürichZürichSwitzerland

Personalised recommendations