Advertisement

Biology and Fertility of Soils

, Volume 46, Issue 1, pp 1–15 | Cite as

Temperature sensitivity of soil organic matter decomposition—what do we know?

  • Margit von LützowEmail author
  • Ingrid Kögel-Knabner
Review

Abstract

Soil organic matter (SOM) represents one of the largest reservoirs of carbon on the global scale. Thus, the temperature sensitivity of bulk SOM and of different SOM fractions is a key factor determining the response of the terrestrial carbon balance to climatic warming. We condense the available knowledge about the potential temperature sensitivity and the actual temperature sensitivity of decomposition in situ, which ultimately depends on substrate availability. We review and evaluate contradictory results of estimates of the temperature sensitivity of bulk SOM and of different SOM fractions. The contradictory results demonstrate a need to focus research on biological and physicochemical controls of SOM stabilisation and destabilisation processes as a basis for understanding strictly causal relationships and kinetic properties of key processes that determine pool sizes and turnover rates of functional SOM pools. The current understanding is that temperature sensitivity of SOM mineralisation is governed by the following factors: (1) the stability of SOM, (2) the substrate availability, which is determined by the balance between input of organic matter, stabilisation and mineralisation of SOM, (3) the physiology of the soil microflora, its efficiency in substrate utilisation and its temperature optima and (4) physicochemical controls of destabilisation and stabilisation processes, like pH and limitation of water, oxygen and nutrient supply. As soil microflora is functionally omnipotent and most SOM is of high age and stability, the temperature dependence of stable SOM pools is the central question that determines C stocks and stock changes under global warming.

Keywords

SOM destabilisation Q10 Arrhenius equation Michaelis–Menten kinetics CO2 flux Temperature sensitivity 

Notes

Acknowledgements

We thank the two reviewers as well as the editor for their constructive and very helpful advice. This study was financially supported by the Federal Ministry of Education and Research within the project ‘Potential analysis of modifications of land use systems and their biogeochemical cycles for the attainment of the greenhouse gas reduction goals’ (FKZ 01LG0801A).

References

  1. Ågren GI, Bosatta E (2002) Reconciling differences in predictions of temperature response of soil organic matter. Soil Biol Biochem 34:129–132CrossRefGoogle Scholar
  2. Ågren GI, Wetterstedt JÅM (2007) What determines the temperature response of soil organic matter decomposition? Soil Biol Biochem 39:1794–1798CrossRefGoogle Scholar
  3. Anderson JM (1992) Response of soils to climatic change. Adv Ecol Res 22:163–210CrossRefGoogle Scholar
  4. Anderson TH, Domsch KH (1985a) Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol Fertil Soils 1:81–89CrossRefGoogle Scholar
  5. Anderson TH, Domsch KH (1985b) Maintenance carbon requirements of actively-metabolizing microbial populations under in situ conditions. Soil Biol Biochem 17:197–203CrossRefGoogle Scholar
  6. Anderson T-H, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH the microbial biomass of forest soils. Soil Biol Biochem 25:393–395CrossRefGoogle Scholar
  7. Anderson DJ, Flanagan PW (1989) Biological processes regulating organic matter dynamics in tropical soils. In: Coleman DC, Oades JM, Uehara G (eds) Dynamics of soil organic matter in tropical ecosystems. Department of Agronomy and Soil Science, University of Hawaii, Honolulu, pp 97–124Google Scholar
  8. Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der inversion von Rohrzucker durch Säuren. Z Phys Chem 4:226–248Google Scholar
  9. Behera B, Wagner GH (1974) Microbial growth rate in glucose-amended soil. Soil Sci Soc Am Proc 38:591–594Google Scholar
  10. Bellamy PH, Loveland PJ, Bradley RI, Lark M, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437:245–248PubMedCrossRefGoogle Scholar
  11. Biasi C, Rusalimova O, Mayer H, Kaiser C, Wanek W, Barsukov P, Junger H, Richter A (2005) Temperature-dependent shift from labile to recalcitrant carbon sources of artic heterotrophs. Rapid Commun Mass Spectrom 19:1401–1408PubMedCrossRefGoogle Scholar
  12. Bird MI, Chivas AR, Head J (1996) A latitudinal gradient in carbon turnover times in forest soils. Nature 381:143–146CrossRefGoogle Scholar
  13. Blagodatskaya Е, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131CrossRefGoogle Scholar
  14. Boddy E, Roberts P, Hill PW, Farrar J, Jones DL (2008) Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils. Soil Biol Biochem 40:1557–1566CrossRefGoogle Scholar
  15. Bol R, Bolger T, Cully R, Little D (2003) Recalcitrant soil organic materials mineralize more efficiently at higher temperatures. J Plant Nutr Soil Sci 166:300–307CrossRefGoogle Scholar
  16. Bosatta E, Ågren GI (1999) Soil organic matter quality interpreted thermodynamically. Soil Biol Biochem 31:1889–1891CrossRefGoogle Scholar
  17. Bradford MA, Davies CA, Frey SD, Maddox R, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327PubMedCrossRefGoogle Scholar
  18. Cheng W, Zhang Q, Coleman DC, Carroll CR, Hoffman CA (1996) Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol Biochem 28:1283–1288CrossRefGoogle Scholar
  19. Christensen BT (1996) Carbon in primary and secondary organomineral complexes. In: Carter MR, Stewart BA (eds) Structure and organic matter storage in agricultural soils. CRC, Boca Raton, pp 97–166Google Scholar
  20. Conant RT, Drijber RA, Haddix ML, Parton WJ, Paul EA, Plante AF, Six J, Steinweg JM (2008a) Sensitivity of organic matter decomposition to warming varies with its quality. Glob Chang Biol 14:868–877CrossRefGoogle Scholar
  21. Conant RT, Steinweg JM, Haddix ML, Paul EA, Plante AF, Six J (2008b) Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance. Ecology 89:2384–2391CrossRefGoogle Scholar
  22. Conen F, Leifeld J, Seth B, Alewell C (2006) Warming mineralises young and old soil carbon equally. Biogeosciences 3:515–519Google Scholar
  23. Conen F, Karhu K, Leifeld J, Seth B, Vanhala P, Liski J, Alewell C (2008) Temperature sensitivity of young and old soil carbon—same soil, slight differences in 13C natural abundance method, inconsistent results. Soil Biol Biochem 40:2703–2705CrossRefGoogle Scholar
  24. Coûteaux M-M, Bottner P, Anderson JM, Berg B, Bolger T, Casals P, Romanyà J, Thiéry JM, Vallejo VR (2001) Decomposition of 13C-labelled standard plant material in a latitudinal transect of European coniferous forests: differential impact of climate on the decomposition of soil organic matter compartments. Biogeochemistry 54:147–170CrossRefGoogle Scholar
  25. Coûteaux MM, Sarmiento L, Bottner P, Acevedo D, Thiéry JM (2002) Decomposition of standard plant material along an altitudinal transect (65–3968 m) in the tropical Andes. Soil Biol Biochem 34:69–78CrossRefGoogle Scholar
  26. Dalias P, Anderson J, Bottner P, Coûteaux M-M (2001) Long-term effects of temperature on carbon mineralisation processes. Soil Biol Biochem 32:1049–1057CrossRefGoogle Scholar
  27. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:65–173CrossRefGoogle Scholar
  28. Davidson EA, Trumbore SE, Amundson R (2000) Soil warming and organic carbon content. Nature 408:789–790PubMedCrossRefGoogle Scholar
  29. Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Chang Biol 12:154–164CrossRefGoogle Scholar
  30. Ekschmitt K, Liu M, Vetter S, Fox O, Wolters V (2005) Strategies used by soil biota to overcome soil organic matter stability—why is dead organic matter left over in the soil? Geoderma 128:167–176CrossRefGoogle Scholar
  31. Eliasson PE, McMurtrie RE, Pepper DA, Strömgren M, Sune Linder S, Ågren GI (2005) The response of heterotrophic CO2 flux to soil warming. Glob Chang Biol 11:167–181CrossRefGoogle Scholar
  32. Fang C, Smith P, Moncrieff JB, Smith JU (2005a) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59CrossRefGoogle Scholar
  33. Fang C, Smith P, Smith JU (2005b) Is resistant soil organic matter more sensitive to temperature than the labile organic matter? Biogeosciences Discuss 2:725–735Google Scholar
  34. Feng X, Simpson MJ (2008) Temperature responses of individual soil organic matter components. J Geophys Res 113:G03036. doi: 03010.01029/02008JG000743 CrossRefGoogle Scholar
  35. Fierer N, Allen AS, Schimel JP, Holden PA (2003) Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob Chang Biol 9:1322–1332CrossRefGoogle Scholar
  36. Fierer N, Craine JM, McLauchlan KK, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326CrossRefGoogle Scholar
  37. Flessa H, Amelung W, Helfrich M, Wiesenberg GLB, Gleixner G, Brodowski S, Rethemeyer J, Kramer C, Grootes P-M (2008) Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: a synthesis. J Plant Nutr Soil Sci 171:36–51CrossRefGoogle Scholar
  38. Gershenson A, Bader NE, Cheng WX (2009) Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Glob Chang Biol 15:176–183CrossRefGoogle Scholar
  39. Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861PubMedCrossRefGoogle Scholar
  40. Graf A, Weihermüller L, Huisman JA, Herbst M, Bauer J, Vereecken H (2008) Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies. Biogeosciences Discuss 5:1867–1898Google Scholar
  41. Gu LH, Post WM, King AW (2004) Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: a model analysis. Glob Biogeochem Cycles 18:Gb1022. doi: 1010.1029/2003gb002119 CrossRefGoogle Scholar
  42. Hakkenberg R, Churkina G, Rodeghiero M, Börner A, Steinhof A, Cescatti A (2008) Temperature sensitivity of the turnovertimes of soil organic matter in forests. Ecol Appl 18:119–131PubMedCrossRefGoogle Scholar
  43. Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochem 48:115–146CrossRefGoogle Scholar
  44. Hartley IP, Ineson P (2008) Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biol Biochem 40:1567–1574CrossRefGoogle Scholar
  45. Hopkins DW, Sparrow AD, Elberling B, Gregorich EG, Novis PM, Greenfield LG, Tilston EL (2006) Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biol Biochem 38:3130–3140CrossRefGoogle Scholar
  46. Hopkins DW, Waite IS, Mc Nicol JW, Poulton PR, Mac Donald AJ, O’Donnell AG (2009) Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades. Glob Chang Biol 15:1739–1754. doi: 10.1111/j.1365-2486.2008.01809.x: CrossRefGoogle Scholar
  47. Insam H, Parkinson D, Domsch KH (1989) Influence of macroclimate on soil microbial biomass. Soil Biol Biochem 21:211–221CrossRefGoogle Scholar
  48. Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306CrossRefGoogle Scholar
  49. Jenny H (1941) Factors of soil formation. McGraw Hill, New York, p 281Google Scholar
  50. Jenny H (1980) The soil resource: origin and behavior. Springer, New YorkGoogle Scholar
  51. Jin XB, Wang SM, Zhou YK (2008) Microbial CO2 production from surface and subsurface soil as affected by temperature, moisture, and nitrogen fertilisation. Aust J Soil Res 46:273–280CrossRefGoogle Scholar
  52. Joergensen RG, Brookes PC, Jenkinson DS (1990) Survival of the soil microbial biomass at elevated temperatures. Soil Biol Biochem 22:1129–1136CrossRefGoogle Scholar
  53. Jones RJA, Hiederer R, Rusco E, Montanarella L (2005) Estimating organic carbon in the soils of Europe for policy support. Eur J Soil Sci 56:655–671CrossRefGoogle Scholar
  54. Kätterer T, Reichstein M, Andren O, Lomander A (1998) Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models. Biol Fertil Soils 27:258–262CrossRefGoogle Scholar
  55. Kirkby KJ, Smart SM, Black HIJ, Bunce RGH, Corney PM, Smithers RJ (2005) Long term ecological change in British woodland (1971–2001). English Nature, Peterborough English Nature Research Report 653Google Scholar
  56. Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic carbon storage. Soil Biol Biochem 27:753–760CrossRefGoogle Scholar
  57. Kirschbaum MUF (2000) Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochem 48:21–51CrossRefGoogle Scholar
  58. Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol Biochem 38:2510–2518CrossRefGoogle Scholar
  59. Knorr W, Prentice IC, House IJ, Holland EA (2005a) On the available evidence for the temperature dependence of soil organic carbon. Biogeosciences Discuss 2:749–755Google Scholar
  60. Knorr W, Prentice IC, House JI, Holland EA (2005b) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301CrossRefGoogle Scholar
  61. Koch O, Tscherko D, Kandeler E (2007) Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochem Cycles 21:GB4017. doi: 4010.1029/2007GB002983 CrossRefGoogle Scholar
  62. Larionova AA, Yevdokimov IV, Bykhovets SS (2007) Temperature response of soil respiration is dependent on concentration of readily decomposable C. Biogeosciences 4:1073–1081CrossRefGoogle Scholar
  63. Lavelle P, Blanchart E, Martin A, Martin S, Spain A, Toutain F, Barois I, Schaefer R (1993) A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25:130–150CrossRefGoogle Scholar
  64. Leifeld J (2005) Interactive comment on “On the available evidence for the temperature dependence of soil organic carbon” by W. Knorr et al. Biogeosciences Discuss 2:348–352Google Scholar
  65. Leifeld J, Fuhrer J (2005) The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochem 75:433–453CrossRefGoogle Scholar
  66. Leifeld J, Zimmermann M, Fuhrer J (2008) Simulating decomposition of labile soil organic carbon: effects of pH. Soil Biol Biochem 40:2948–2951CrossRefGoogle Scholar
  67. Liski J, Ilvesniemi H, Mäkelä A, Westman CJ (1999) CO2 emissions from soil in response to climatic warming are overestimated—the decomposition of old soil organic matter is tolerant of temperature. Ambio 29:171–174Google Scholar
  68. Luo Y, Wan S, Hui D, Wallace L (2001) Acclimation of soil respiration to warming in a tall grass prairie. Nature 413:622–625PubMedCrossRefGoogle Scholar
  69. Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle. Feedbacks to the climate system. Science 298:2173–2176PubMedCrossRefGoogle Scholar
  70. Müller CW, Kögel-Knabner I (2009) Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biol Fertil Soils 45:347–359CrossRefGoogle Scholar
  71. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670CrossRefGoogle Scholar
  72. Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzman L, Kane D (2000) Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406:978–981PubMedCrossRefGoogle Scholar
  73. Ottow JCG (1997) Omnipotenz der Lebensgemeinschaften. In: Ottow JCG, Bidlingmaier W (eds) Umweltbiotechnologie. Gustav Fischer, Stuttgart, pp 99–103Google Scholar
  74. Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006) Microbial activity in soils frozen to below −39°C. Soil Biol Biochem 38:785–794CrossRefGoogle Scholar
  75. Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic, San Diego, p 340Google Scholar
  76. Paul EA, Vorney RP (1980) Nutrient and energy flows through soil microbial biomass. In: Ellwood DC, Latham MJ, Slater JH, Hedger JN, Lynch JM (eds) Contemporary microbial ecology. Academic, London, pp 215–237Google Scholar
  77. Pavelka M, Acosta M, Marek MV, Kutsch W, Janous D (2007) Dependence of the Q10 values on the depth of the soil temperature measuring point. Plant Soil 292:171–179CrossRefGoogle Scholar
  78. Post WM, Emanuel WR, Zinke PJ, Stangenberger AL (1982) Soil carbon pools and world life zones. Nature 298:156–159CrossRefGoogle Scholar
  79. Powlson D (2005) Will soil amplify climate change? Nature 433:204–205PubMedCrossRefGoogle Scholar
  80. Reichstein M, Kätterer T, Andre O, Ciais P, Schulze E-D, Cramer W, Cramer W, Papale D, Valentini R (2005a) Does the temperature sensitivity of decomposition vary with soil organic matter quality? Biogeosciences Discuss 2:737–747Google Scholar
  81. Reichstein M, Kätterer T, Andren O, Ciais P, Schulze E-D, Cramer W, Papale D, Valentini R (2005b) Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook. Biogeosciences 2:317–321CrossRefGoogle Scholar
  82. Rey A, Pegoraro E, Jarvis PG (2008) Carbon mineralization rates at different soil depths across a network of European forest sites (FORCAST). Eur J Soil Sci 59:1049–1062CrossRefGoogle Scholar
  83. Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, Gcte N (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562CrossRefGoogle Scholar
  84. Sanchez P, Gichuru MP, Katz LB (1982) Organic matter in major soils of the tropical and temperate regions. Translations of the 12th International Congress of Soil Science (New Delhi) 1, pp 99–114Google Scholar
  85. Sanchez PA, Palm CA, Szott LT, Chuevas E, Lal R (1989) Organic input management in tropical agroecosystems. In: Coleman DC, Oades JM, Uehara G (eds) Dynamics of soil organic matter in tropical ecosystems. University of Hawaii, Honolulu, pp 125–152Google Scholar
  86. Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob Biogeochem Cycles 8:279–293CrossRefGoogle Scholar
  87. Schlesinger WH (1995) An overview of the C cycle. In: Lal R, Kimble J, Levin J, Stewart BA (eds) Soils and global change. CRC, Boca Raton, pp 9–26Google Scholar
  88. Shi PL, Zhang XZ, Zhong ZM, Ouyang H (2006) Diurnal and seasonal variability of soil CO2 efflux in a cropland ecosystem on the Tibetan Plateau. Agric For Meteorol 137:220–233CrossRefGoogle Scholar
  89. Shields JA, Paul EA, Lowe WE (1973) Turnover of microbial tissue in soil under field conditions. Soil Biol Biochem 5:753–764CrossRefGoogle Scholar
  90. Sinsabaugh RL (1994) Enzymic analysis of microbial pattern and process. Biol Fertil Soils 17:69–74CrossRefGoogle Scholar
  91. Smith P, Chapman SJ, Scott WA, Black HIJ, Wattenbach M, Milne R, Cambell CD, Lilly A, Ostle N, Levy PE, Lumsdon DG, Millard P, Towers W, Zaehle S, Smith JU (2007) Climate change cannot be entirely responsible for soil carbon loss observed in England and Wales, 1978–2003. Glob Chang Biol 13:2605–2609CrossRefGoogle Scholar
  92. Smith P, Fang CM, Dawson JJC, Moncrieff JB (2008) Impact of global warming on soil organic carbon. Advances in agronomy, vol 97. Elsevier, San Diego, pp 1–43Google Scholar
  93. Sollins P, Homann P, Caldwell BA (1996) Stabilisation and destabilisation of soil organic matter: mechanisms and controls. Geoderma 74:65–105CrossRefGoogle Scholar
  94. Steinweg JM, Plante AF, Conant RT, Paul EA, Tanaka DL (2008) Patterns of substrate utilization during long-term incubations at different temperatures. Soil Biol Biochem 40:2722–2728CrossRefGoogle Scholar
  95. Tang JW, Baldocchi DD, Qi Y, Xu LK (2003) Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric For Meteorol 118:207–220CrossRefGoogle Scholar
  96. Thornley JHM, Cannell MGR (2001) Soil carbon storage response to temperature: an hypothesis. Ann Bot 87:591–598CrossRefGoogle Scholar
  97. Tjoelker MG, Oleksyn J, Reich PB (2001) Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Glob Chang Biol 7:223–230CrossRefGoogle Scholar
  98. Townsend AR, Vitousek PM, Trumbore SE (1995) Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii. Ecology 76:721–733CrossRefGoogle Scholar
  99. Trasar-Cepeda C, Gil-Sotres F, Leiros MC (2007) Thermodynamic parameters of enzymes in grassland soils from Galicia, NW Spain. Soil Biol Biochem 39:311–319CrossRefGoogle Scholar
  100. Trumbore SE (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground dynamics. Ecol Appl 10:399–411CrossRefGoogle Scholar
  101. Trumbore SE, Chadwick OA, Amundson R (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:393–396CrossRefGoogle Scholar
  102. USDA (2000) Soil organic carbon map. US Department of Agriculture, Natural Resources, Conservation Service, Soil Survey Division, World Soil Resources, Washington, DC. Available via DIALOG. http://soils.usda.gov/use/worldsoils/mapindex/order.html
  103. Valentini R, Matteucci G, Dolman AJ, Schulze E-D, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Ü, Berbigier P, Loustau D, Guethmundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff JB, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861865CrossRefGoogle Scholar
  104. Vanhala P, Karhu K, Tuomi M, Sonninen E, Jungner H, Fritze H, Liski J (2007) Old soil carbon is more temperature sensitive than the young in an agricultural field. Soil Biol Biochem 39:2967–2970CrossRefGoogle Scholar
  105. von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445CrossRefGoogle Scholar
  106. von Lützow M, Kögel-Knabner I, Ludwig B, Matzner E, Flessa H, Ekschmitt K, Guggenberger G, Marschner B, Kalbitz K (2008) Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J Plant Nutr Soil Sci 171:111–124CrossRefGoogle Scholar
  107. Waldrop MP, Firestone MK (2004) Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochem 67:235–248CrossRefGoogle Scholar
  108. Walse C, Berg B, Svedrup H (1998) Review and synthesis of experimental data on organic matter decomposition with respect to the effects of temperature, moisture, and acidity. Environ Rev 6:25–40CrossRefGoogle Scholar
  109. Wang C, Yang J, Zhang Q (2006) Soil respiration in six temperate forests in China. Glob Chang Biol 12:2103–2114CrossRefGoogle Scholar
  110. Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358CrossRefGoogle Scholar
  111. Wardle DA (1993) Changes in the microbial biomass and metabolic quotient during leaf litter succession in some New Zealand forest and scrubland ecosystems. Funct Ecol 7:346–355CrossRefGoogle Scholar
  112. Wardle DA (1998) Controls of temporal variability of the soil microbial biomass: a global-scale synthesis. Soil Biol Biochem 30:1627–1637CrossRefGoogle Scholar
  113. Xu M, Qi Y (2001) Spatial and seasonal variations of Q(10) determined by soil respiration measurements at a Sierra Nevadan forest. Glob Biogeochem Cycles 15:687–696CrossRefGoogle Scholar
  114. Yuste JC, Baldocchi DD, Gershenson A, Goldstein A, Misson NL, Wong S (2007) Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob Change Biol 13:2018–2035CrossRefGoogle Scholar
  115. Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Lehrstuhl für BodenkundeTechnische Universität MünchenFreisingGermany

Personalised recommendations