Advertisement

Biology and Fertility of Soils

, Volume 45, Issue 8, pp 839–844 | Cite as

Cast production and NIR spectral signatures of Aporrectodea caliginosa fed soil with different amounts of half-decomposed Populus nigra litter

  • Chi Zhang
  • Romain Langlest
  • Elena Velasquez
  • Anne Pando
  • Didier Brunet
  • Jun Dai
  • Patrick Lavelle
Original Paper

Abstract

Sub-adult individuals of Aporrectodea caliginosa were incubated for 16 weeks under laboratory cultures in a soil treated with 0%, 10% or 50% of a Populus nigra half-decomposed leaves, respectively. Growth was maximum in the 50% organic matter treatment and cocoon production occurred. Average soil ingestion rates decreased from 1.56 g/g−1 fresh weight of worm per day−1 in control soil to 1.17 and 0.5 g, respectively, in treatments with 10% and 50% half-decomposed litter. Surface casts never comprised more than 10% of total cast production. Near-infrared spectrometry (NIRS)signatures of digested and non-ingested soil significantly differed and showed a rather constant effect of digestion, independent of the organic matter content (p < 0.01). These results confirm the value of NIRS spectral signatures as indicators of the origin of soil aggregates and biological processes involved in soil aggregation.

Keywords

Earthworm casts NIR spectral signature Soil macroaggregates Aporrectodea caliginosa 

References

  1. Blanchart E, Albrecht A, Alegre J, Duboisset A, Pashanasi B, Lavelle P, Brussaard L (1999) Effects of earthworms on soil structure and physical properties. In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropicalagroecosystems. CAB International, Wallingford, UK, pp 139–162Google Scholar
  2. Bossuyt H, Six J, Hendrix PF (2005) Protection of soil carbon by microaggregates within earthworm casts. Soil Biol Biochem 37:251–258CrossRefGoogle Scholar
  3. Breure AM, Mulder CPH, Römbke J, Ruf A (2005) Ecological classification and assessment concepts in soil protection. Ecotoxicol Environ Saf 62:211–229PubMedCrossRefGoogle Scholar
  4. Cecillon L, Cassagne N, Czarnes S, Gros R, Brun JJ (2008) Variable selection in near infrared spectra for the biological characterization of soil and earthworm casts. Soil Biol Biochem 48:1975–1979CrossRefGoogle Scholar
  5. Cook SMF, Linden DR (1996) Effect of food type and placement on earthworm (Aporrectodea tuberculata) burrowing and soil turnover. Biol Fertil Soils 21:201–206CrossRefGoogle Scholar
  6. Cortez J, Bouché MB (1987) Composition chimique du mucus cutané de Allolobophora chaetophora chaetophora (Oligochaeta: Lumbricidae). C R Acad Sci Paris 305:207–210Google Scholar
  7. Dai J, Becquer T, Rouiller JH, Reversat G, Bernhard-Reversat F, Nahmani J, Lavelle P (2004) Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils. Soil Biol Biochem 36:91–98CrossRefGoogle Scholar
  8. Edwards CA (ed) (2004) Earthworm ecology. CRC Press, Boca RatonGoogle Scholar
  9. Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7:1221–1244CrossRefGoogle Scholar
  10. Hamilton RG, Lloyd MR (1991) An experimental study on the effects of earthworms on the ecological success of fern gametophytes. Am Fern J 81:95–99CrossRefGoogle Scholar
  11. Hamilton WE, Sillman DY (1989) Influence of earthworm middens on the distribution of soil microarthropods. Biol Fertil Soils 8:279–284Google Scholar
  12. Hedde M, Lavelle P, Joffre R, Jimenez JJ, Decaëns T (2005) Specific functional signature in soil macro-invertebrate biostructures. Funct Ecol 19:783–795CrossRefGoogle Scholar
  13. Jouquet PD, Lagerlof J, Lavelle P, Lepage M (2006) Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl Soil Ecol 32:153–164CrossRefGoogle Scholar
  14. Judas M (1992) Gut content analysis of earthworms (Lumbricidae) in a Beechwood. Soil Biol Biochem 24:1413–1417CrossRefGoogle Scholar
  15. Lavelle P (1975) Consommation annuelle de terre par une population naturelle de vers de terre (Millsonia anomala OMODEO, Acanthodrilidae, Oligochaeta) dans la savane de Lamto (Côte d'Ivoire). Rev Ecol Biol Sol 12:11–24Google Scholar
  16. Lavelle P, Spain AV (2001) Soil ecology. Kluwer Scientific Publications, AmsterdamGoogle Scholar
  17. Lavelle P, Bignell D, Lepage M (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193Google Scholar
  18. Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie F, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 41(S1):3–15CrossRefGoogle Scholar
  19. Loranger G, Ponge JF, Blanchart E, Lavelle P (1998) Impact of earthworms on the diversity of microarthropods in a vertisol (Martinique). Biol Fertil Soils 27:21–26CrossRefGoogle Scholar
  20. Marinissen JCY, Bok J (1988) Earthworm-amended soil structure: its influence on Collembola populations in grassland. Pedobiologia 32:243–252Google Scholar
  21. Martin A, Cortez J, Barois I, Lavelle P (1987) Les mucus intestinaux de Ver de Terre, moteur de leurs interactions avec la microflore. Rev Ecol Biol Sol 24:549–558Google Scholar
  22. Mora P, Miambi E, Jimenez JJ, Decaens T, Rouland C (2005) Functional complement of biogenic structures produced by earthworms, termites and ants in the neotropical savannas. Soil Biol Biochem 37:1043–1048CrossRefGoogle Scholar
  23. Piearce TG (1978) Gut contents of some lumbricid earthworms. Pedobiologia 18:3–157Google Scholar
  24. Ruiz MP, Ramajo M, Jesus JB, Trigo D, Diaz Cosin DJ (2006) Selective feeding of the earthworm Hormogaster elisae (Oligochaeta, Hormogastridae) in laboratory culture. Eur J Soil Biol 42:S289–S295CrossRefGoogle Scholar
  25. Schenk JS, Westerhaus MO (1991) ISI NIRS-2. Software for near infrared instruments. Infrasoft International: Silverspring USA, http://www.winisi.com
  26. Scheu S (1990) Changes in microbial nutrient status during secondary succession and its modification by earthworms. Oecologia 84:351–358Google Scholar
  27. Scheu S (1991) Mucus excretion and carbon turnover of endogeic earthworms. Biol Fertil Soils 12:217–220CrossRefGoogle Scholar
  28. Trigo D, Barois I, Garvin MH, Huerta E, Irisson S, Lavelle P (1999) Mutualism between earthworms and soil microflora. Pedobiologia 43:866–873Google Scholar
  29. Velasquez E, Lavelle P, Barrios E, Joffre R, Bernhardt-Reversat F (2005) Evaluating soil quality in tropical agroecosystems of Colombia using NIRS. Soil Biol Biochem 37:889–898CrossRefGoogle Scholar
  30. Velasquez E, Pelosi C, Brunet D, Grimaldi M, Martins M, Rendeiro AC, Barrios E, Lavelle P (2006) This ped is my ped: visual separation and NIRS spectra allow determination of the origins of soil macro-aggregates. Pedobiologia 51:75–87CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Chi Zhang
    • 1
  • Romain Langlest
    • 2
    • 5
  • Elena Velasquez
    • 4
    • 5
  • Anne Pando
    • 2
    • 5
  • Didier Brunet
    • 6
  • Jun Dai
    • 1
  • Patrick Lavelle
    • 3
  1. 1.College of Natural Resources and EnvironmentSouth China Agricultural UniversityGuangzhouChina
  2. 2.UMR BIOEMCO, IRDUniversité de Paris 6Bondy CedexFrance
  3. 3.UMR BIOEMCO, IRDUniversité de Paris 6CaliColombia
  4. 4.Sede PalmiraUniversidad Nacional de Colombia PalmiraValleColombia
  5. 5.TSBF Institute of CIATCaliColombia
  6. 6.UR SeqBioIRD/MOSTMontpellier Cedex 5France

Personalised recommendations