Biology and Fertility of Soils

, Volume 45, Issue 6, pp 655–662 | Cite as

Responses of native legume desert trees used for reforestation in the Sonoran Desert to plant growth-promoting microorganisms in screen house

  • Yoav BashanEmail author
  • Bernardo Salazar
  • Ma. Esther Puente
Short Communication


Three slow-growing legume trees used for desert reforestation and urban gardening in the Sonoran Desert of Northwestern Mexico and the Southwestern USA were evaluated whether their growth can be promoted by inoculation with plant growth-promoting bacteria (Azospirillum brasilense and Bacillus pumilus), unidentified arbuscular mycorrhizal (AM) fungi (mainly Glomus sp.), and supplementation with common compost under regular screenhouse cultivation common to these trees in nurseries. Mesquite amargo (Prosopis articulata) and yellow palo verde (Parkinsonia microphylla) had different positive responses to several of the parameters tested while blue palo verde (Parkinsonia florida) did not respond. Survival of all tree species was over 80% and survival of mesquite was almost 100% after 10 months of cultivation. Inoculation with growth-promoting microorganisms induced significant effects on the leaf gas exchange of these trees, measured as transpiration and diffusive resistance, when these trees were cultivated without water restrictions.


Azospirillum Desert Mesquite Palo verde Parkinsonia Plant growth-promoting bacteria PGPB PGPR Prosopis Reforestation 



We thank Gabor Bethlenfalvay for critical reading of the original manuscript and its revised version, Peter Felker (D'Arrigo Bros. Co., Salinas, CA, USA) for his advice concerning cultivation of mesquite trees, Jose Luis Leon de la Luz for botanical advice, and Luz de-Bashan for organizing the manuscript. This study was mainly supported by Consejo Nacional de Ciencia y Tecnologia of Mexico (CONACYT, contract #50052-Z) and partly funded by The Bashan Foundation, USA. Yoav Bashan participated in this study in memory of the late Avner Bashan of Israel.


  1. Adams M, Strain B (1969) Seasonal photosynthetic rates in stems of Cercidium floridum Benth. Photosynthetica 3:55–62Google Scholar
  2. Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal Symbiosis. Mycorrhiza 11:3–42. doi: 10.1007/s005720100097 CrossRefGoogle Scholar
  3. Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381Google Scholar
  4. Bacilio M, Hernandez J-P, Bashan Y (2006) Restoration of giant cardon cacti in barren desert soil amended with common compost and inoculated with Azospirillum brasilense. Biol Fertil Soils 43:112–119. doi: 10.1007/s00374-006-0072-y CrossRefGoogle Scholar
  5. Barth RC, Klemmedson JO (1986) Seasonal and annual changes in biomass nitrogen and carbon of mesquite and palo verde ecosystems. J Range Manage 39:108–112. doi: 10.2307/3899278 CrossRefGoogle Scholar
  6. Bashan Y, de-Bashan LE (2005a) Bacteria / Plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment, vol. 1. Elsevier, Oxford, pp 103–115Google Scholar
  7. Bashan Y, de-Bashan LE (2005b) Fresh-weight measurements of roots provide inaccurate estimates of the effects of plant growth-promoting bacteria on root growth: a critical examination. Soil Biol Biochem 37:1795–1804. doi: 10.1016/j.soilbio.2005.02.013 CrossRefGoogle Scholar
  8. Bashan Y, Dubrovsky JG (1996) Azospirillum spp. participation in dry matter partitioning in grasses at the whole plant level. Biol Fertil Soils 23:435–440. doi: 10.1007/BF00335919 CrossRefGoogle Scholar
  9. Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (Plant Growth-Promoting Bacteria) and PGPB. Soil Biol Biochem 30:1225–1228. doi: 10.1016/S0038-0717(97) 00187-9 CrossRefGoogle Scholar
  10. Bashan Y, Holguin G (2002) Plant growth-promoting bacteria: a potential tool for arid mangrove reforestation. Trees-Struct Funct 16:159–166Google Scholar
  11. Bashan Y, Rojas A, Puente ME (1999) Improved establishment and development of three cacti species inoculated with Azospirillum brasilense transplanted into disturbed urban desert soil. Can J Microbiol 45:441–451. doi: 10.1139/cjm-45-6-441 CrossRefGoogle Scholar
  12. Bashan Y, Davis EA, Carrillo-Garcia A, Linderman RG (2000a) Assessment of VA mycorrhizal inoculum potential in relation to the establishment of cactus seedlings under mesquite nurse-trees in the Sonoran desert. Appl Soil Ecol 14:165–176. doi: 10.1016/S0929-1393(00) 00050-0 CrossRefGoogle Scholar
  13. Bashan Y, Moreno M, Troyo E (2000b) Growth promotion of the oilseed halophyte Salicornia bigelovii in seawater inoculated with mangrove rhizosphere bacteria and Azospirillum. Biol Fertil Soils 32:265–272. doi: 10.1007/s003740000246 CrossRefGoogle Scholar
  14. Bashan Y, Hernandez J-P, Leyva LA, Bacilio M (2002) Alginate microbeads as inoculant carrier for plant growth-promoting bacteria. Biol Fertil Soils 35:359–368. doi: 10.1007/s00374-002-0481-5 CrossRefGoogle Scholar
  15. Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577. doi: 10.1139/w04-035 PubMedCrossRefGoogle Scholar
  16. Bean TM, Smith SE, Karpiscak MM (2004) Intensive revegetation in Arizona’s hot desert. The advantages of container stock. Nativeplants J 5:173–180Google Scholar
  17. Bethlenfalvay GJ, Dakessian S, Pacovsky RS (1984) Mycorrhizae in a southern California desert: ecological implications. Can J Bot 62:519–524. doi: 10.1139/b84-077 CrossRefGoogle Scholar
  18. Bethlenfalvay GJ, Lindeman RG (eds) (1992) Mycorrhizae in sustainable agriculture. ASA. Spec. Publ, Madison, Wisconsin, USAGoogle Scholar
  19. Bowers JE, Turner RM (2001) Dieback and episodic mortality of Cercidium microphyllum (foothill paloverde), a dominant Sonoran desert tree. J Torrey Bot Soc 128:128–140. doi: 10.2307/3088735 CrossRefGoogle Scholar
  20. Brundrett M, Melville L, Peterson L (eds) (1994) Practical methods in mycorrhiza research. Mycologue Publications, Sidney, British Columbia, CanadaGoogle Scholar
  21. Carrillo AE, Li CY, Bashan Y (2002) Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense. Naturwissenschaften 89:428–432. doi: 10.1007/s00114-002-0347-6 PubMedCrossRefGoogle Scholar
  22. Carrillo-Garcia A, Leon de la Luz J-L, Bashan Y, Bethlenfalvay GJ (1999) Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran desert. Restor Ecol 7:321–335. doi: 10.1046/j.1526-100X.1999.72027.x CrossRefGoogle Scholar
  23. Carrillo-Garcia A, Bashan Y, Diaz-Rivera E, Bethlenfalvay GJ (2000) Effects of resource - island soils, competition, and inoculation with Azospirillum on survival and growth of Pachycereus pringlei, the giant cactus of the Sonoran Desert. Restor Ecol 8:65–73. doi: 10.1046/j.1526-100x.2000.80009.x CrossRefGoogle Scholar
  24. Chanway CP (1997) Inoculation of tree roots with plant growth promoting soil bacteria: an emerging technology for reforestation. For Sci 43:99–112Google Scholar
  25. Creus CM, Sueldo RJ, Barassi CA (1996) Azospirillum inoculation in pregerminating wheat seeds. Can J Microbiol 42:83–86CrossRefGoogle Scholar
  26. Cui M, Nobel PS (1992) Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi. New Phytol 122:643–649Google Scholar
  27. Domenech J, Ramos-Solano B, Probanza A, Lucas-Garcıa JA, Colon JJ, Gutierrez-Manero FJ (2004) Bacillus spp. and Pisolithus tinctorius effects on Quercus ilex ssp. ballota: a study on tree growth, rhizosphere community structure and mycorrhizal infection. For Ecol Manage 194:3–303. doi: 10.1016/j.foreco.2004.02.026 CrossRefGoogle Scholar
  28. Enebak SA (2005) Rhizobacteria isolated from loblolly pine seedlings mediate growth-promotion of greenhouse-grown loblolly, slash, and longleaf pine seedlings. For Sci 51:541–545Google Scholar
  29. Estes BL, Enebak SA, Chappelka AH (2004) Loblolly pine seedling growth after inoculation with plant growth-promoting rhizobacteria and ozone exposure. Can J Res 34:1410–1416. doi: 10.1139/x04-026 CrossRefGoogle Scholar
  30. Felker P, Clark PR, Laag AE, Pratt PF (1981) Salinity tolerance of the tree legume mesquite (Prosopis glandulosa var torreyana, P. velutina, and P. articulata), algarrobo (P. chilensis), kiawe (P. pallida) and tamarugo (P. tamarugo) grown in sand culture on nitrogen free media. Plant Soil 61:311–317. doi: 10.1007/BF02182012 CrossRefGoogle Scholar
  31. Felker P, Cannell GH, Clark PR, Osborn JF, Nash P (1983) Biomass production of Prosopis species (mesquite), Leucaena, and other leguminous trees grown under heat/drought stress. For Sci 29:592–606Google Scholar
  32. Grace J, Malcolm DC, Bradbury IK (1975) The effect of wind and humidity on leaf diffusive resistance in Sitka spruce seedlings. J Appl Ecol 12:931–940. doi: 10.2307/2402099 CrossRefGoogle Scholar
  33. Grandlic CJ, Mendez MO, Chorover J, Machado B, Maier RM (2008) Identification of plant growth-promoting bacteria suitable for phytostabilization of mine tailings. Environ Sci Technol 42:2079–2084. doi: 10.1021/es072013j PubMedCrossRefGoogle Scholar
  34. Hernandez J-P, de-Bashan LE, Rodriguez DJ, Rodriguez Y, Bashan Y (2009) Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. Eur J Soil Biol 45:88–93. doi: 10.1016/j.ejsobi.2008.08.004 CrossRefGoogle Scholar
  35. Herrera MA, Salamanca CP, Barea JM (1993) Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified Mediterranean ecosystems. Appl Environ Microbiol 59:129–133PubMedGoogle Scholar
  36. Hooper E, Condit R, Legendre P (2002) Responses of 20 native tree species to reforestation strategies for abandoned farmland in Panama. Ecol Appl 12:1626–1641. doi: 10.1890/1051-0761(2002) 012[1626:RONTST]2.0.CO;2 CrossRefGoogle Scholar
  37. Levy Y, Krikun J (1980) Effect of vesicular-arbuscular mycorrhiza on Citrus jambhiri water relations. New Phytol 85:25–31. doi: 10.1111/j.1469-8137.1980.tb04444.x CrossRefGoogle Scholar
  38. Lucas García JA, Domenech J, Santamaría C, Camacho M, Daza A, Gutierrez Mañero FJ (2004) Growth of forest plants (pine and holm-oak) inoculated with rhizobacteria: relationship with microbial community structure and biological activity of its rhizosphere. Environ Exp Bot 52:239–251. doi: 10.1016/j.envexpbot.2004.02.003 CrossRefGoogle Scholar
  39. Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Leeuwenhoek Int J G 86:1–25. doi: 10.1023/B:ANTO.0000024903.10757.6e CrossRefGoogle Scholar
  40. Marsh BA (1971) Measurement of length in random arrangements of lines. J Appl Ecol 8:265–267. doi: 10.2307/2402144 CrossRefGoogle Scholar
  41. Mctainsh GH (1986) A dust monitoring programme for desertification control in West Africa. Environ Conserv 13:17–25CrossRefGoogle Scholar
  42. Miyakawa A (1999) Creative ecology: restoration of native forests by native trees. Plant Biotechnol 16:15–25Google Scholar
  43. Moore R, Russell R (1990) The 'Three Norths' forest protection system–China. Agrofor Syst 10:71–88. doi: 10.1007/BF00118728 CrossRefGoogle Scholar
  44. Perry DA, Molina R, Amaranthus MP (1987) Mycorrhizae, mycorrhizospheres, and reforestation: current knowledge and research needs. Can J Res 17:929–940. doi: 10.1139/x87-145 CrossRefGoogle Scholar
  45. Puente M-E, Bashan Y (1993) Effect of inoculation with Azospirillum brasilense strains on the germination and seedlings growth of the giant columnar Cardon cactus (Pachycereus pringlei). Symbiosis 15:49–60Google Scholar
  46. Puente ME, Bashan Y, Li CY, Lebsky VK (2004a) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol 6:629–642. doi: 10.1055/s-2004-821100 PubMedCrossRefGoogle Scholar
  47. Puente ME, Li CY, Bashan Y (2004b) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biol 6:643–650. doi: 10.1055/s-2004-821101 PubMedCrossRefGoogle Scholar
  48. Requena N, Perez-Solis E, Azcón-Aguilar C, Jeffries P, Barea J-M (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498. doi: 10.1128/AEM.67.2.495-498.2001 PubMedCrossRefGoogle Scholar
  49. Roberts NC (1989) Baja California Plant Field Guide. Natural History, La Jolla, CA, p 309Google Scholar
  50. Sarig S, Okon Y, Blum A (1992) Effect of Azospirillum brasilense inoculation on growth dynamics and hydraulic conductivity of Sorghum bicolor roots. J Plant Nutr 15:805–819. doi: 10.1080/01904169209364364 CrossRefGoogle Scholar
  51. Sastry MSR, Sharma AK, Johri BN (2000) Effect of an AM fungal consortium and Pseudomonas on the growth and nutrient uptake of Eucalyptus hybrid. Mycorrhiza 10:55–61. doi: 10.1007/s005720000057 CrossRefGoogle Scholar
  52. Scott K (2006) Effect of heat on the dormancy and viability of Parkinsonia seeds: Implications for management. Ecol Manage Restor 7:153–156. doi: 10.1111/j.1442-8903.2006.280_6.x CrossRefGoogle Scholar
  53. Shreve F (1951) Vegetation of the Sonoran desert. Carnegie Institution of Washington, Washington DC Publication no. 591Google Scholar
  54. Spalding VM (1906) Biological relations of desert shrubs. II. Absorption of water by leaves. Bot Gaz 41:262–282. doi: 10.1086/328798 CrossRefGoogle Scholar
  55. Toledo G, Bashan Y, Soeldner A (1995) In vitro colonization and increase in nitrogen fixation of seedling roots of black mangrove inoculated by a filamentous cyanobacteria. Can J Microbiol 41:1012–1020CrossRefGoogle Scholar
  56. Vierheilig H, Coughlan A, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007PubMedGoogle Scholar
  57. Wang X, Dong Z, Zhang J, Liu L (2004) Modern dust storms in China: an overview. J Arid Environ 58:559–574. doi: 10.1016/j.jaridenv.2003.11.009 CrossRefGoogle Scholar
  58. Whittaker RH, Niering WA (1975) Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology 56:771–790. doi: doi:10.2307/1936291 CrossRefGoogle Scholar
  59. Zaady E, Perevolotsky A (1995) Enhancement of growth and establishment of oak seedlings (Quercus ithaburensis Decaisne) by inoculation with Azospirillum brasilense. For Ecol Manage 72:81–83. doi: 10.1016/0378-1127(94) 03446-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Yoav Bashan
    • 1
    • 2
    Email author
  • Bernardo Salazar
    • 1
  • Ma. Esther Puente
    • 1
  1. 1.Environmental Microbiology GroupNorthwestern Center for Biological Research (CIBNOR)La PazMexico
  2. 2.Department of Soil, Water and Environmental ScienceThe University of ArizonaTucsonUSA

Personalised recommendations