Biology and Fertility of Soils

, Volume 45, Issue 5, pp 511–520 | Cite as

Evolution of composition and content of soil carbohydrates following forest wildfires

  • A. Martín
  • M. Díaz-RaviñaEmail author
  • T. Carballas
Original Paper


The time evolution of the content and composition of carbohydrates was studied in the surface layer of forest soils non-affected and affected by wildfires. The low- and high-severity fires caused an immediate reduction of the C present as carbohydrates of 34% and 47–55%, respectively, which was due to the decrease of both hexoses and pentoses in two hydrolysis fractions (hydrolysate-A, non-cellulosic polysaccharides; hydrolysate-B, cellulosic polysaccharides). Carbohydrates tended to recover with time; however, values had still not reached the amounts found in the corresponding unburnt samples after 12–15 months. No difference between the unburnt and burnt samples was observed in the distribution of the neutral sugars in the hydrolysates over time. On a percentage basis, 72–92% of the total neutral sugars was extracted in hydrolysate-A (59 ± 7% hexoses; 24 ± 7% pentoses) and the rest, 8–28%, in hydrolysate-B (15 ± 5% hexoses; 2 ± 1% pentoses). The contribution of hexoses and pentoses to the neutral sugar pool was different between the two hydrolysis fractions being the hexoses/pentoses ratio higher for hydrolysate-B than for hydrolysate-A. The results also showed that the proportion of soil C present as carbohydrates-C rather than the total carbohydrates content should be used for monitoring short- and medium-term changes induced by fire in soil organic matter quality.


Forest wildfires Cellulosic and non-cellulosic carbohydrates Hexoses and pentoses content Post-fire recovery 



The authors thank J. Salmonte and B. Arnaiz for technical assistance. This study was supported by the Consellería de Educación y Ordenación Universitaria de la Xunta de Galicia; and by the Comisión Interministerial de Ciencia y Tecnología (CYCT), Spain.


  1. Almendros G, Polo A, Ibáñez JJ, Lobo MC (1984) Contribución al estudio de la influencia de los incendios forestales en las características de la materia orgánica del suelo. II. Transformaciones del humus por ignición en condiciones controladas de laboratorio. Rev Ecol Biol Sol 21:145–160Google Scholar
  2. Angers DA, Nadeau P, Mehuys GR (1988) Determination of carbohydrate composition of soil hydrolysates by high-performance liquid chromatography. J Chromatogr A 454:444–449. doi: 10.1016/S0021-9673(00) 88645-8 CrossRefGoogle Scholar
  3. Basanta MR, Díaz-Raviña M, Cuiñas P, Carballas T (2004) Field data of microbial response to a fire retardant. Agrochimica 48:52–60Google Scholar
  4. Benzing-Purdie L (1980) Organic matter and carbohydrate distribution in an Orthic Humic Gleysol. Soil Biol Biochem 12:567–571. doi: 10.1016/0038-0717(80) 90037-1 CrossRefGoogle Scholar
  5. Carballas M, Acea MJ, Cabaneiro A, Trasar C, Villar MC, Díaz-Raviña M, Férnandez I, Prieto A, Saá A, Vázquez J, Zehner R, Carballas T (1994) Organic matter, nitrogen, phosphorus and microbial population evolution in forest humiferous acid soils after wildfires. In: Trabaud L, Prodon R (eds) Fire in Mediterranean ecosystems. Ecosystems Research Series, Report 5. CEC, Brussels, pp 379–385Google Scholar
  6. Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 3:1–10. doi: 10.1007/s00442-004-1788-8 CrossRefGoogle Scholar
  7. Chandler C, Cheney P, Thomas P, Trabaud L, Williams D (eds) (1983) Fire in forestry, vol 1. Forest fire behaviour and effects. Wiley, New YorkGoogle Scholar
  8. Cheshire MV (1979) Nature and origin of carbohydrates in soils. Academic, LondonGoogle Scholar
  9. Conacher A, Sala M (1998) Land degradation in Mediterranean environments of the world: nature and extent. Causes and Solutions, Wiley, New YorkGoogle Scholar
  10. Debosz K, Vogsen L, Labouiau R (2002) Carbohydrates in hot water extracts of soil aggregates as influenced by long-term management. Commun Soil Sci Plant Anal 33:623–634. doi: 10.1081/CSS-120002768 CrossRefGoogle Scholar
  11. Díaz-Fierros F, Benito E, Vega JA, Castelao A, Soto B, Pérez R, Taboada T (1990) Solute loss and soil erosion in burnt soil from Galicia (NW Spain). In: Goldammer FG, Jenkins MJ (eds) Fire in ecosystems dynamics. Mediterranean and Northern Perspectives. SPB, The Hague, pp 103–116Google Scholar
  12. Díaz-Raviña M, Carballas T, Acea MJ (1988) Microbial biomass and metabolic activity in four acid soils. Soil Biol Biochem 20:817–823. doi: 10.1016/0038-0717(88) 90087-9 CrossRefGoogle Scholar
  13. Doutre DA, Hay GW, Hood A, Van Loon GW (1978) Spectrophotometric methods to determinate carbohydrates in soil. Soil Biol Biochem 10:457–462. doi: 10.1016/0038-0717(78) 90036-6 CrossRefGoogle Scholar
  14. Fernández I, Cabaneiro A, Carballas T (1997) Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil Biol Biochem 29:1–11. doi: 10.1016/S0038-0717(96) 00289-1 CrossRefGoogle Scholar
  15. Folsom BL, Wagner JH, Scrivner CL (1974) Comparison of soil carbohydrate in several praire and forest soils by gas-liquid chromatography. Soil Sci Soc Am J 38:305–309CrossRefGoogle Scholar
  16. González-Pérez JA, Gonzalez-Vila FJ, Almendros G, Knicker H (2004) The effect of fire on soil organic matter—a review. Environ Int 30:855–870. doi: 10.1016/j.envint.2004.02.003 PubMedCrossRefGoogle Scholar
  17. Gregorich EG, Carter MR, Angers DA, Monreal CM, Ellert BH (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can J Soil Sci 74:367–385Google Scholar
  18. Haynes RJ (2000) Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biol Biochem 32:211–219. doi: 10.1016/S0038-0717(99) 00148-0 CrossRefGoogle Scholar
  19. Haynes RJ, Beare MH (1996) Aggregation and organic matter storage in meso-thermal, humid soils. In: Carter MR, Steward BA (eds) Advances in soil science: structure and organic matter storage in agricultural soils. Lewis, New York, pp 213–261Google Scholar
  20. Haynes RJ, Francis GS (1993) Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions. J Soil Sci 44:665–675. doi: 10.1111/j.1365-2389.1993.tb02331.x CrossRefGoogle Scholar
  21. Hernández T, García C, Reinhardt I (1997) Short-term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forest soils. Biol Fertil Soils 25:109–116. doi: 10.1007/s003740050289 CrossRefGoogle Scholar
  22. IUSS Working Group WRB (2007) World reference base for soil resources 2006, first updated 2007. A framework for international classification, correlation and communication. World soil resources reports No. 103. FAO, RomaGoogle Scholar
  23. Jolivet C, Angers DA, Chantigny MH, Andreux F, Arrouays D (2006) Carbohydrate dynamics in particle-size fractions of sandy spodosols following forest conversion to maize cropping. Soil Biol Biochem 38:2834–2842. doi: 10.1016/j.soilbio.2006.04.039 CrossRefGoogle Scholar
  24. Kavdir Y, Ekinci H, Yüksel Q, Mermut AR (2005) Soil aggregate stability and 13C-CP/MAS-NMR assesment of organic matter in soils influenced by forest wildfires in Çanakkale, Turkey. Geoderma 129:219–229. doi: 10.1016/j.geoderma.2005.01.013 CrossRefGoogle Scholar
  25. Knicker H, Almendros F, Gonzalez-Vila JA, Gonzalez-Perez JA, Polvillo O (2006) Characteristic alterations of quantity and quality of soil organic matter caused by fires in continental Mediterranean ecosystem: a solid-state 13C NMR study. Eur J Soil Sci 57:538–569. doi: 10.1111/j.1365-2389.2006.00814.x CrossRefGoogle Scholar
  26. Larré-Larrouy MC, Blanchart E, Albrecht A, Feller C (2004) Carbon and monosaccharides of a tropical Vertisol under pasture and market-gardening: distribution in secondary organomineral separates. Geoderma 119:163–178. doi: 10.1016/S0016-7061(03) 00259-3 CrossRefGoogle Scholar
  27. Lu G, Sakagami K, Tanaka H, Hamada R (1998) Role of soil organic matter in stabilization of water-stable aggregates in soils under different types of land use. Soil Sci Plant Nutr 44:147–155Google Scholar
  28. Mayor AG, Bautista S, Llovet J, Bellot J (2007) Post-fire hydrological and erosional responses of a Mediterranean landscape: Seven years of catchment-scale dynamics. Catena 71:68–75. doi: 10.1016/j.catena.2006.10.006 CrossRefGoogle Scholar
  29. Neary DG, Klopatek CC, Debano LF, Folliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manage 122:51–71. doi: 10.1016/S0378-1127(99) 00032-8 CrossRefGoogle Scholar
  30. Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337. doi: 10.1007/BF02205590 CrossRefGoogle Scholar
  31. Oades JM, Kirkman MA, Wagner GH (1970) The use of gas-liquid chromatography for the determination of sugars extracted from soils by acid sulphuric. Soil Sci Soc Am J 34:230–235Google Scholar
  32. Prieto-Fernández A, Acea MJ, Carballas T (1998) Soil microbial and extractable C and N after wildfire. Biol Fertil Soils 27:132–142. doi: 10.1007/s003740050411 CrossRefGoogle Scholar
  33. Prieto-Fernández A, Carballas M, Carballas T (2004) Inorganic and organic N pools in soils burnt or heated: immediate alterations and evolution after forest wildfires. Geoderma 121:291–306. doi: 10.1016/j.geoderma.2003.11.016 CrossRefGoogle Scholar
  34. Puget P, Angers DA, Chenu C (1999) Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biol Biochem 31:55–63. doi: 10.1016/S0038-0717(98) 00103-5 CrossRefGoogle Scholar
  35. Roldán A, Albadalejo J, Thornes JB (1996) Aggregate stability changes in a semiarid soil after treatment with different organic amendments. Arid Soil Res Rehabil 10:139–148Google Scholar
  36. Rovira P, Vallejo R (2007) Labile, recalcitrant and inert organic matter in Mediterranean forest soils. Soil Biol Biochem 39:202–215. doi: 10.1016/j.soilbio.2006.07.021 CrossRefGoogle Scholar
  37. Sala M, Rubio JL (eds) (1994) Soil erosion and degradation as a consequence of forest fires. Geoforma Ediciones, Logroño, SpainGoogle Scholar
  38. Schnitzer M (1991) Soil organic matter. The next 75 years. Soil Sci 51:41–58Google Scholar
  39. Soto B, Díaz-Fierros F (1998) Runoff and soil erosion from areas of burnt scrub: comparison of experimental results with those predicted by the WEPP model. Catena 31:257–270. doi: 10.1016/S0341-8162(97) 00047-7 CrossRefGoogle Scholar
  40. Spielvogel S, Prietzel J, Kögel-Knabner I (2007) Changes in lignin, phenols and neutral sugars in different soil types of a high-elevation forest ecosystem 25 years alter forest dieback. Soil Biol Biochem 39:655–668. doi: 10.1016/j.soilbio.2006.09.018 CrossRefGoogle Scholar
  41. Stevenson FJ (1982) Soil Carbohydrates. In: Stevenson FJ (ed) Humus chemistry, genesis, composition, reactions. Wiley, New York, pp 146–171Google Scholar
  42. Tanaka H, Murata T, Sakagami K, Hamada R (1995) Relationship between neutral sugars and the degree of humification in andisols. Soil Sci Plant Nutr 41:753–761Google Scholar
  43. Thomas RL, Lynch DL (1961) A method for the quantitative estimation of pentoses in soil. Soil Sci 91:312–316Google Scholar
  44. Villar MC, Petrikova V, Díaz-Raviña M, Carballas T (2004) Changes in soil microbial biomass and aggregate stability following burning and soil rehabilitation. Geoderma 122:73–82. doi: 10.1016/j.geoderma.2003.12.005 CrossRefGoogle Scholar
  45. Yhosida M, Kumada K (1979) Studies on the properties of organic matter in buried humic horizon derived from volcanic ash. Soil Sci Plant Nutr 25:209–216Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Departamento de Bioquímica del SueloInstituto de Investigaciones Agrobiológicas de Galicia (CSIC)Santiago de CompostelaSpain

Personalised recommendations