Advertisement

Biology and Fertility of Soils

, Volume 45, Issue 6, pp 573–583 | Cite as

Diversity and seasonal variations of mycorrhiza and rhizosphere bacteria in three common plant species at the Slovenian Ljubljana Marsh

  • Matevž Likar
  • Marjana Regvar
  • Ines Mandic-Mulec
  • Blaž Stres
  • Hermann BotheEmail author
Original Paper

Abstract

Interactions between plants and microorganisms can significantly affect plant health and productivity as well as ecosystem functioning. Detailed knowledge of the tripartite relationships between plants, fungi, and bacteria, and their environment is still limited. In the present study, the soils adjacent to three plant species (Cruciata laevipes, Mentha piperita, Equisetum arvense) in the Ljubljana Marsh and the bulk, plant-free soil were analyzed for their bacterial community structure in June and October 2006. The terminal restriction fragment length polymorphism analysis indicated a different bacterial community structure in the rhizosphere and in bulk soil, however, with almost no seasonal changes between late spring and autumn samples and no apparent impact of the three plant species. In addition, root colonization of the three plant species by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) was microscopically assessed monthly from May until October 2006. A presumably accidental correlation between monthly precipitation and the degree of arbuscule formation, with the latter lagging 1 month, was noted for M. piperita, the most heavily colonized of the three plant species. With all three plants, the phosphorus content in roots correlated positively with most AMF structures. Microsclerotia of DSE were mainly abundant in autumn samples. Fungal diversity in roots was estimated using temporal temperature gradient gel electrophoresis separation of the fungal polymerase chain reaction products obtained for both 18S-rDNA and the 5.8S-ITS2-28S rDNA segments. No specific effects of either plant species or seasonal changes on mycorrhizal community structure were discernible.

Keywords

Arbuscular mycorrhizal fungi in wetlands Eubacterial communities in wetlands Microbial community analysis by molecular techniques Rhizosphere microorganisms Ljubljana Marsh 

Notes

Acknowledgements

The authors are indebted to M. Geoffrey Yates of Lewes, G. B. for helpful comments and for correcting the English. The work was supported by the following Slovenian projects: “Biology of Plants” (ARRS P1-0212), Microbiology and Biotechnology of Food and Environment (ARRS P4-116) and by COST 8.59 Phytotechnologies to Promote Sustainable Land Use Management and Improve Food Chain Safety.

References

  1. Barrow J (2003) Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13:239–247PubMedCrossRefGoogle Scholar
  2. Bohrer KE, Friese CF, Arnon JP (2004) Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza 14:329–337PubMedCrossRefGoogle Scholar
  3. Börstler B, Renker C, Kahmen A, Buscot F (2006) Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biol Fertil Soils 42:286–298CrossRefGoogle Scholar
  4. Bremner JM, Keeney D (1965) Determination and isotopicratio analysis of different forms of nitrogen in soils: I. Apparatus and procedure for distillation and determination of ammonium. Soil Sci Soc Am. Proc 29:504–507CrossRefGoogle Scholar
  5. Burford JR, Bremner JM (1975) Relationship between the denitrification capacities of soils and total water-soluble and readily decomposable soil organic matter. Soil Biol Biochem 7:389–394CrossRefGoogle Scholar
  6. Chatzinotas A, Sandaa RA, Schonhuber W, Amann R, Daae FL, Torsvik V, Zeyer J, Hahn D (1998) Analysis of broad-scale differences in microbial community composition of two pristine forest soils. Syst Appl Microbiol 21:579–587PubMedGoogle Scholar
  7. Egert M, Marhan S, Wagner B, Scheu S, Friedrich MW (2004) Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta-Lumbricidae). FEMS Microbiol Ecol 48:187–197CrossRefPubMedGoogle Scholar
  8. Eilmus S, Rösch C, Bothe H (2007) Prokaryotic life in a potash-polluted marsh with emphasis on N-metabolizing microorganisms. Environ Poll 146:478–491CrossRefGoogle Scholar
  9. Ellenberg H (1988) Vegetation ecology of Central Europe. Cambridge University Press, CambridgeGoogle Scholar
  10. Fuchs B, Haselwandter K (2004) Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 14:277–281PubMedCrossRefGoogle Scholar
  11. Füzy A, Biro B, Toth T, Hildebrandt U, Bothe H (2008) Drought, but not salinity, determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. J Plant Physiol 165:1181–1192PubMedCrossRefGoogle Scholar
  12. Gardes M, Bruns T (1993) ITS primers with enhanced specifity for basidiomycetes- application of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  13. Hacin J, Čop J, Mahne I (2001) Nitrogen mineralization in marsh meadows in relation to soil organic matter content and watertable level. J Plant Nutrit Soil Science 164:503–509CrossRefGoogle Scholar
  14. Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105:613–617CrossRefGoogle Scholar
  15. Hartl W, Putz B, Erhart E (2003) Influence of rates and timing of biowaste compost application on rye yield and soil nitrate levels. Europ J Soil Biol 39:129–139CrossRefGoogle Scholar
  16. Heijne B, van Dam D, Heil GW, Bobbink R (1996) Acidification effects on vesicular-arbuscular mycorrhizal (VAM) infection, growth and nutrient uptake of established heathland herb species. Plant Soil 179:197–206CrossRefGoogle Scholar
  17. Helgason T, Daniell TJ, Husband R, Fitter A, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431PubMedCrossRefGoogle Scholar
  18. Hernandez D, Fernandez JM, Plaza C, Polo A (2007) Water soluble organic matter of a degraded soil amended with pig slurry. Science Total Environ 378:101–103CrossRefGoogle Scholar
  19. Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299PubMedCrossRefGoogle Scholar
  20. Kandeler E (1995) Organic matter by wet combustion. In: Schinner F, Ohlinger R, Kandeler E, Margesin R (eds) Methods in Soil Biology. Springer, Berlin, pp 397–398Google Scholar
  21. Kent AD, Smith DJ, Benson BJ, Triplett EW (2003) Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl Environ Microbiol 69:6768–6776PubMedCrossRefGoogle Scholar
  22. Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecology Letters 3:137–141CrossRefGoogle Scholar
  23. Kraigher B, Stres B, Hacin J, Ausec L, Mahne I, van Elsas JD, Mandic-Mulec I (2006) Microbial activity and community structure in two drained fen soils in the Ljubljana Marsh. Soil Biol Biochem 38:2762–2771CrossRefGoogle Scholar
  24. Küster E (1990) Mikrobiologie von Moor und Torf. In: Göttlich K (ed) Moor und Torfkunde. E. Schweizertbart’sche Verlagsbuchhandlung, Stuttgart, pp 262–271Google Scholar
  25. Mandyam K, Jumpponen A (2008) Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endohytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment. Mycorrhiza 18:145–155PubMedCrossRefGoogle Scholar
  26. Matekwor Ahulu E, Gollote M, Gianinazzi-Pearson VC, Nonaka M (2006) Coocurring plants forming distinct arbuscular mycorrhizal morphologies harbour similar AM fungal species. Mycorrhiza 17:37–49PubMedCrossRefGoogle Scholar
  27. Mergel A, Kloos K, Bothe H (2001) Seasonal fluctuations in the population of denitrifying and N2-fixing bacteria in an acid soil of a Norway spruce forest. Plant Soil 230:145–160CrossRefGoogle Scholar
  28. Muthukumar T, Udaiyan K, Shanmughavel P (2004) Mycorrhiza in sedges-an overview. Mycorrhiza 14:65–77PubMedCrossRefGoogle Scholar
  29. Olson SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2 Chemical and Microbiological Properties. ASA and SSSA, Madison, pp 403–430Google Scholar
  30. Orłowska E, Zubek S, Jurkiewicz A, Szarek-Lukaszewska G, Turnau K (2002) Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza 12:153–160PubMedCrossRefGoogle Scholar
  31. Phillips JM, Hayman DS (1970) Improved procedures for cleaning roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–168CrossRefGoogle Scholar
  32. Phuyal M, Artz RRE (2008) Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an ombotrophic bog. Plant Ecol 196:111–121CrossRefGoogle Scholar
  33. Pongrac P, Vogel-Mikus K, Kump P, Necemer M, Tolra R, Poschenreider C, Barcelo J, Regvar M (2007) Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Chemosphere 69:1602–1609PubMedCrossRefGoogle Scholar
  34. Rösch C, Bothe H (2005) Improved assessment of denitrifying, N2-fixing, and total community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl Environ Microbiol 71:2026–2035PubMedCrossRefGoogle Scholar
  35. Seliškar A (1988) Water, boggy marshy and grassy vegetation of Ljubljansko barje (the Ljubljana moor-eastern part). Scopolia 10:1–44Google Scholar
  36. Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ. Microbiol. 58:291–295PubMedGoogle Scholar
  37. Smith SE, Read DJ (1997) Mycorrhizal Symbiosis, 2nd edn. Academic, San Diego also 3rd ed in 2008Google Scholar
  38. Šraj-Kržič N, Pongrac P, Klemenc M, Regvar M, Gaberscik A (2006) Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aquat Bot 85:333–338Google Scholar
  39. Stres B, Danevčič T, Pal L, Mrkonjic Fuka M, Resman L, Leskovec S, Hacin J, Stopar D, Mahne I, I Mandic-Mulec I (2008) Influence of temperature and soilwater content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol Ecol 66:110–122PubMedCrossRefGoogle Scholar
  40. Stukenbrock EH, Rosendahl S (2005) Distribution of dominant arbuscular mycorrhizal fungi among five plant species in undisturbed vegetation of coastal grassland. Mycorrhiza 15:497–503PubMedCrossRefGoogle Scholar
  41. Torsvik V, Goksøyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787PubMedGoogle Scholar
  42. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221 ISBN: 2-85340-774-8Google Scholar
  43. Van der Heijden MAG (2004) Arbuscular mycorrhizal fungi as support systems for seedling establishment in grasslands. Ecol Lett 7:293–303CrossRefGoogle Scholar
  44. Van der Heijden MAG, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  45. Van der Heijden MAG, Bakker R, Verwaal J, Scheublin TR, Rutten M, Van Logtestjin R, Staehelin C (2006) Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grasslands. FEMS Microb Ecol 56:178–187CrossRefGoogle Scholar
  46. Van Hoewyk D, Wigand C, Groffman PM (2001) Endomycorrhizal colonization of Dasiphora floribunda, a native plant species of calcareous wetlands in eastern. Wetlands, New York, pp 431–436Google Scholar
  47. Vandenkoornhuyse P, Leyval C (1998) SSU rDNA sequencing and PCR-fingerprinting reveal genetic variation within Glomus mosseae. Mycologia 90:792–798CrossRefGoogle Scholar
  48. VanElsas JD, Mantynen V, Wolters AC (1997) Soil DNA extraction and assessment of the fate of Mycobacterium chlorophenolicum strain PCP-1 in different soils by 16 S ribosomal RNA gene sequence based on probable number PCR and immunofluorescence. Biol Fertil Soils 24:188–195CrossRefGoogle Scholar
  49. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363PubMedCrossRefGoogle Scholar
  50. Weishampel PA, Bedford BL (2006) Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 16:495–502PubMedCrossRefGoogle Scholar
  51. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innes MA, Gelfrand DH, Sninsky JJ, White TS (eds) PCR -protocols: a guide to methods and applications. Academic, New York, pp 315–322Google Scholar
  52. Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol. doi: 10.1111/j.1462-2920.2009.01882.x
  53. Wirsel SGR (2004) Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology 48:129–138CrossRefPubMedGoogle Scholar
  54. Wolfe BE, Weishampel PA, Klironomos JN (2006) Arbuscular mycorrhizal fungi and water table affect wetland plant community composition. J Ecol 94:905–914CrossRefGoogle Scholar
  55. Ypsilantis I, Sylvia DM (2007) Interactions of assemblages of mycorrhizal fungi with two Florida wetland plants. Appl Soil Ecol 35:261–271CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Matevž Likar
    • 1
  • Marjana Regvar
    • 1
  • Ines Mandic-Mulec
    • 2
  • Blaž Stres
    • 2
    • 4
  • Hermann Bothe
    • 3
    Email author
  1. 1.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of Food Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Botanical InstituteUniversity of CologneCologneGermany
  4. 4.Department of Animal Sciences, Biotechnical FacultyUniversity of LjubljanaDomžaleSlovenia

Personalised recommendations