Biology and Fertility of Soils

, Volume 45, Issue 5, pp 531–538 | Cite as

Microbial activity, organic C accumulation and 13C abundance in soils under alley cropping systems after 9 years of recultivation of quaternary deposits

  • Seth Nii-Annang
  • Holger Grünewald
  • Dirk Freese
  • Reinhard F. Hüttl
  • Oliver Dilly
Original Paper


The impact of alley cropping on post-lignite mine soils developing from quaternary deposits after 9 years of recultivation was evaluated on the basis of microbial indicators, organic C and total N contents, and the isotope characteristics of soil C. Soils were sampled at the 0 to 3, 3 to 10, and 10 to 30 cm depths under black locust (Robinia pseudoacacia L.), poplar (Populus spp.), the transition zone and in the middle of alley under rye (Secale cereale). There was no significant effect of vegetation on microbial properties presumably, due to the high variability, whereas organic C and total N contents at the 0- to 3-cm layer were significantly higher under black locust and poplar than in the transition zone and rye field. Organic C total N contents, and basal respiration, microbial biomass, and microbial quotient decreased with soil depth. Soil organic C and total N contents were more than doubled after 9 years of recultivation, with annual C and N accretion rate of 162 g C org m−2 year−1 and 6 g N t m−2 year−1. Microbial properties indicated that the soils are in early stages of development; the C isotope characteristics confirmed that the sequestered C was predominantly from C3 plants of the alley cropping.


Microbial properties Alley cropping Organic C and N accumulation C isotope characteristics 



The manuscript is based on a contribution to the European Geosciences Union (EGU) General Assembly meeting of 2008 under section SSS27: Soil quality indicators to assess genesis, degradation and rehabilitation processes.

The authors are highly grateful to G. Franke, R. Müller, H. Köller, and K. Weber at the Chair of Soil Protection and Recultivation, Brandenburg University of Technology, Cottbus, Germany for the laboratory assistance.


  1. Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221. doi: 10.1016/0038-0717(78)90099-8 CrossRefGoogle Scholar
  2. Anderson TH, Domsch KH (1980) Quantities of plant nutrients in microbial biomass of selected soils. Soil Sci 130:211–216. doi: 10.1097/00010694-198010000-00008 CrossRefGoogle Scholar
  3. Anderson TH, Domsch KH (1985) Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol Fertil Soils 1:81–89. doi: 10.1007/BF00255134 CrossRefGoogle Scholar
  4. Anderson TH, Domsch KH (1986) Carbon link between microbial biomass and soil organic matter. In: Megusar F, Gantar M (eds) Proceedings of the fourth international symposium on microbial ecology. Slovene Society of Microbiology, Ljubljana, Yugoslavia, pp 467–471Google Scholar
  5. Anderson TH, Domsch KH (1989) Ratio of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21:471–479. doi: 10.1016/0038-0717(89)90117-X CrossRefGoogle Scholar
  6. Billings SA, Richter DD (2006) Changes in isotopic signatures of soil nitrogen and carbon during 40 years of forest development. Oecologia 148:325–333. doi: 10.1007/s00442-006-0366-7 PubMedCrossRefGoogle Scholar
  7. Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–275. doi: 10.1007/BF00336094 CrossRefGoogle Scholar
  8. Brookes PC, Powlson DS, Jenkinson DS (1984) Phosphorus in the soil microbial biomass. Soil Biol Biochem 16:169–175. doi: 10.1016/0038-0717(84)90108-1 CrossRefGoogle Scholar
  9. Chabbi A, Sebilo M, Rumpel C, Schaaf W, Mariotti A (2008) Origin of nitrogen in reforested lignite rich mine soils revealed by stable isotope analysis. Environ Sci Technol 42:2787–2792. doi: 10.1021/es702377k PubMedCrossRefGoogle Scholar
  10. Chander K, Goyal S, Nandal DP, Kapoor KK (1998) Soil organic matter, microbial biomass and enzyme activities in tropical agroforestry system. Biol Fertil Soils 27:168–172. doi: 10.1007/s003740050416 CrossRefGoogle Scholar
  11. Crow E, Sulzman EW, Rugh WD, Bowden RD, Lajtha K (2006) Isotopic analysis of respired CO2 during decomposition of separated soil organic matter pools. Soil Biol Biochem 38:3279–3291. doi: 10.1016/j.soilbio.2006.04.007 CrossRefGoogle Scholar
  12. Devi NB, Yavada PS (2006) Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipure, North-east India. Appl Ecol 31:220–227. doi: 10.1016/j.apsoil.2005.05.005 CrossRefGoogle Scholar
  13. Dilly O, Winter K, Lang A, Munch JC (2001) Energetic eco-physiology of the soil microbiota in two landscapes of southern and northern Germany. J Plant Nutr Soil Sci 164:407–413. doi: 10.1002/1522-2624(200108)164:4<407::AID-JPLN407>3.0.CO;2–9 CrossRefGoogle Scholar
  14. Dilly O, Gnass A, Pfeiffer EM (2005) Humus accumulation and microbial activities in calcari-epigleyic fluvisols under grassland and forest diked in for 30 years. Soil Biol Biochem 37:2163–2166. doi: 10.1016/j.soilbio.2005.03.014 CrossRefGoogle Scholar
  15. Dilly O, Franke G, Nii-Annang S, Werber K, Freese D, Zyakun A, Hüttl RF (2008) Soil respiratory indicators including carbon isotope characteristics in response to copper. Geomicrobiol J 25:390–395. doi: 10.1080/01490450802402992 CrossRefGoogle Scholar
  16. Filcheva E, Noustrova M, Gentcheva-Kostadinova Sv, Haigh MJ (2000) Organic carbon accumulation and microbial action in surface coalmine spoils, Pernic, Bulgaria. Ecol Eng 15:1–15. doi: 10.1016/S0925-8574(99)00008-7 CrossRefGoogle Scholar
  17. Friedel JK, Ehrmann O, Pfeiffer M, Stemmer M, Vollmer T, Sommer M (2006) Soil microbial biomass and acidity: effect of site characteristics in humid temperate forest ecosystems. J Plant Nutr Soil Sci 169:175–184. doi: 10.1002/jpln.200521763 CrossRefGoogle Scholar
  18. Gast M, Schaaf W, Scherzer J, Wilden R, Schneider BU, Hüttl RF (2001) Element budgets of pine stand on lignite and pyrite containing soils. J Geochem Explor 73:63–74. doi: 10.1016/S0375-6742(01)00188-1 CrossRefGoogle Scholar
  19. Grünewald H (2005) Anbau schnellwachsender Gehölze für die energetische Verwertung in einem Alley-Cropping-System auf Kippsubstraten des Lausitzer Braunkohlereviers. Brandenburg University of Technology, Cottbus. Cottbuser Schriften 28, 124 ppGoogle Scholar
  20. Grünewald H, Brandt BKV, Schneider BU, Bens O, Kendzia G, Hüttl RF (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29:319–328. doi: 10.1016/j.ecoleng.2006.09.012 CrossRefGoogle Scholar
  21. Haynes RJ, Tregurtha R (1999) Effect of increasing periods under intensive arable vegetable production on biological, chemical and physical indices of soils quality. Biol Fertil Soils 28:259–266. doi: 10.1007/s003740050491 CrossRefGoogle Scholar
  22. Höper H (2005) Substrate-induced respiration. In: Bloem J, Hopkins DW, Benedetti A (eds) Microbiological methods for assessing soil quality. CABI International, Wallingford, UK, pp 84–92Google Scholar
  23. Hüttl RF, Grünewald H, Schneider BU (2002) Production of biomass in an alley-cropping system. 17th WCSS, Thailand, Symposium no. 39 Paper no.1937, 13 ppGoogle Scholar
  24. Insam H, Domsch KH (1988) Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb Ecol 15:177–188. doi: 10.1007/BF02011711 CrossRefGoogle Scholar
  25. Insam H, Haselwandter K (1989) Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79:174–178. doi: 10.1007/BF00388474 CrossRefGoogle Scholar
  26. Insam H, Parkinson D, Domsch KH (1989) Influence of macroclimate on soil microbial biomass. Soil Biol Biochem 21:211–221. doi: 10.1016/0038-0717(89)90097-7 CrossRefGoogle Scholar
  27. Insam H, Mitchell CC, Dormaar JF (1991) Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three ultisols. Soil Biol Biochem 23:459–464. doi: 10.1016/0038-0717(91)90010-H CrossRefGoogle Scholar
  28. Jordan D, Kremer RJ, Bergfield WA, Kim KY, Cacnio VN (1995) Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields. Biol Fertil Soils 19:297–302. doi: 10.1007/BF00336098 CrossRefGoogle Scholar
  29. Krull ES, Skjemstad JA, Burrows WH, Bray SG, Wynn JG, Bol R, Spouncer L, Harms B (2005) Recent vegetation changes in central Queensland, Australia: evidence from δ 13C and 14C analyses of soil organic matter. Geoderma 126:241–259. doi: 10.1016/j.geoderma.2004.09.012 CrossRefGoogle Scholar
  30. Lavahun MFE, Jürgensen RG, Meyer B (1996) Activity and biomass of soil microorganisms at different depths. Biol Fertil Soils 23:38–42. doi: 10.1007/BF00335816 CrossRefGoogle Scholar
  31. Lützow Mv, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445. doi: 10.1111/j.1365-2389.2006.00809.x CrossRefGoogle Scholar
  32. Mungai WN, Miotavalli PP, Kremer RJ, Nelson KA (2005) Spatial variation of soil enzyme and microbial functional diversity in temperate alley cropping systems. Biol Fertil Soils 42:129–136. doi: 10.1007/s00374-005-0005-1 CrossRefGoogle Scholar
  33. Pell M, Strenström J, Granhall U (2005) Soil respiration. In: Bloem J, Hopkins DW, Benedetti (eds) Microbiological methods for assessing soil quality. CABI International, Wallingford, UK, pp 117–126Google Scholar
  34. Rice SK, Westerman B, Federici R (2004) Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen cycling in a pine-oak ecosystem. Plant Ecol 174:97–107. doi: 10.1023/B:VEGE.0000046049.21900.5a CrossRefGoogle Scholar
  35. Rumpel C, Kögel-Knabner I (2003) Characterization of organic matter and carbon cycling in rehabilitated lignite-rich mine soils. Water Air Soil Pollut 3:153–166Google Scholar
  36. Rumpel C, Balesdent J, Grootes P, Weber E, Kögel-Knabner I (2003) Quantification of lignite and vegetation derived soil carbon using 14C activity measurements in a forested chronosequence. Geoderma 112:155–166. doi: 10.1016/S0016-7061(02)00302-6 CrossRefGoogle Scholar
  37. Schafer WM, Nielsen GA, Nettleton WD (1980) Minesoil genesis and morphology in a spoil chronosequence in Montana. Soil Sci Soc Am J 44:802–808Google Scholar
  38. Sparling GP (1997) Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In: Pankhurst C, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CABI International, Wallingford, pp 97–119Google Scholar
  39. Stroo HF, Jencks EM (1982) Enzyme activity and respiration in mine soils. Soil Sci Soc Am J 46:548–553CrossRefGoogle Scholar
  40. Tu K, Dawson T (2005) Partitioning ecosystem respiration using stable carbon isotope analyses of CO2. In: Flagan LB, Ehleringer JB, Petaki DE (eds) Stable isotopes and biosphere-atmosphere interactions: process and biological controls. Elsevier Academic, San Diego, CA, USA, pp 125–153CrossRefGoogle Scholar
  41. Wang Y, Cerling TE, Effland WR (1993) Stable isotope ratios of soil carbonate and soil organic matter as indicators of forest invasion of prairie near Ames, Iowa. Oecologia 95:365–369. doi: 10.1007/BF00320990 CrossRefGoogle Scholar
  42. Wardle DA, Ghani A (1995) A critique of microbial metabolic quotient as a bioindicator of disturbance and ecosystem development. Soil Biol Biochem 27:1601–1610. doi: 10.1016/0038–0717(95)00093-T CrossRefGoogle Scholar
  43. Wirth SJ (2001) Regional scale analysis of soil microbial biomass and soil basal CO2-respiration in northeastern Germany. In: Stott DE, Mohtar RH, Steinhardt GC (eds) Sustaining the global farm. Selected papers from the 10th International Soil Conservation Organization Meeting, West Lafayette, IN, USA, pp 486–493Google Scholar
  44. Zhang P, Li L, Pan G, Ren J (2006) Soil quality in land degradation as indicated by soil chemical, biochemical and microbiological properties in Karst area of southwest Guizhou, China. Environ Geol 51:609–619. doi: 10.1007/s00254-006-0356-4 CrossRefGoogle Scholar
  45. Zyakun AM, Dilly O (2005) Use of carbon isotope composition for characterization of microbial activity in arable soils. Appl Biochem Microbiol 41:512–520. doi: 10.1007/s10438-005-0093-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Seth Nii-Annang
    • 1
  • Holger Grünewald
    • 1
    • 2
  • Dirk Freese
    • 1
  • Reinhard F. Hüttl
    • 1
    • 3
  • Oliver Dilly
    • 1
    • 4
  1. 1.Chair of Soil Protection and RecultivationBrandenburg University of TechnologyCottbusGermany
  2. 2.Johann Heinrich von Thuenen-Institute, Federal Research Institute for Rural Areas, Forestry and FisheriesInstitute for Forest GeneticsGrosshansdorfGermany
  3. 3.National Research Center for GeosciencesPotsdamGermany
  4. 4.School of Integrated Climate System Sciences, KlimaCampus, University of HamburgHamburgGermany

Personalised recommendations