Skip to main content
Log in

The effect of earthworms and liming on soil microbial communities

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The effect of liming and earthworms on the composition and function of soil microbial communities was investigated in an upland soil from the UK in order to understand interactions between the biotic and abiotic components of soil systems. A factorial experiment was established using soils from the Sourhope Farm, near Kelso, with lime or no lime added, with or without earthworms added and a combined treatment of both lime and earthworm additions. The soils were incubated and destructively sampled after 180 days. Measurements of soil microbial biomass, dehydrogenase activity, phenotypic structure (by phospholipid fatty acid analysis (PLFA) and responses to four carbon substrates (d-glucose, l-arginine, α-ketoglutaric acid, α-cyclodextrin) were determined. Statistically significant results were limited to the litter layers, with no significant observations in either the H or Ah horizons. There were significant decreases in the soil microbial biomass and microbial activity in the litter layers caused by the addition of earthworms; liming reduced microbial biomass only. The addition of earthworms caused a significant difference in the PLFA principle component analysis (PCA) profile, as did liming. For the PLFA PCA profile, earthworm plus lime treatment was indistinguishable from the liming result. Addition of earthworms significantly suppressed the response to glucose; this effect was removed by liming. This indicates that liming may significantly alter the ecological interactions between earthworms and the microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baath E, Frostegaard A, Pennanen T, Fritze H (1995) Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol Biochem 27:229–240 doi:10.1016/0038-0717(94)00140-V

    Article  Google Scholar 

  • Barois IP, Lavelle P (1986) Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta). Soil Biol Biochem 18:539–541 doi:10.1016/0038-0717(86)90012-X

    Article  Google Scholar 

  • Bishop HO, Grieve IC, Chudek JA, Hopkins DW (2008) Liming upland grassland: the effects on earthworm communities and the chemical characteristics of carbon in casts. Eur J Soil Sci 59:526–531 doi:10.1111/j.1365-2389.2007.01009.x

    Article  CAS  Google Scholar 

  • Bouche MB (1977) Strategies lombriciennes. In: Lohm U, Persson T (eds) Soil organisms as components of ecosystems. Ecology Bulletin, NFR, Stockholm, pp 122–132

    Google Scholar 

  • Brown GG (1995) How do earthworms affect microfloral and faunal community diversity. Plant Soil 170:209–231 doi:10.1007/BF02183068

    Article  CAS  Google Scholar 

  • Bruneau PMC, Davidson DA, Grieve IC, Young IM, Nunan N (2005) The effects of soil horizons and faunal excrement on bacterial distribution in an upland grassland soil. FEMS Microbiol Ecol 52:139–144 doi:10.1016/j.femsec.2004.10.010

    Article  PubMed  CAS  Google Scholar 

  • Cotter PD, Hill C (2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453 doi:10.1128/MMBR.67.3.429-453.2003

    Article  PubMed  CAS  Google Scholar 

  • Degens BP, Harris JA (1997) Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem 29:1309–1320 doi:10.1016/S0038-0717(97)00076-X

    Article  CAS  Google Scholar 

  • Frostegård A, Tunlid A, Baath A (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    PubMed  Google Scholar 

  • Gong P (1997) Dehydrogenase activity in soil: A comparison between the TTC and INT assay under their optimum conditions. Soil Biol Biochem 29:211–214 doi:10.1016/S0038-0717(96)00290-8

    Article  CAS  Google Scholar 

  • Griffiths BS, Hallett PD, Kuan HL, Gregory AS, Watts CW, Whitmore AP (2008) Functional resilience of the soil microbial communities depends on both soil structure and microbial community composition. Biol Fertil Soils 44:745–754 doi:10.1007/s00374-007-0257-z

    Article  Google Scholar 

  • Guckert JB, Hood MA, White DC (1986) Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl Environ Microbiol 52:794–801

    PubMed  CAS  Google Scholar 

  • Gutierrez JL, Jones CG (2006) Physical ecosystem engineers as agents of biogeochemical heterogeneity. Bioscience 56:227–236 doi:10.1641/0006-3568(2006)056[0227:PEEAAO]2.0.CO;2

    Article  Google Scholar 

  • Haynes RJ, Fraser PM, Piercy JE, Tregurtha RJ (2003) Casts of Aporrectodea caliginosa (savigny) and Lumbricus rubellus (hoffmeister) differ in microbial activity, nutrient availability and aggregate stability. Pedobiologia (Jena) 47:882–887

    Google Scholar 

  • Inubushi K, Brookes PC, Jenkinson DS (1989) Influence of paraquat on the extraction of adenosine triphosphate from soil by trichloracetic acid. Soil Biol Biochem 21:741–742 doi:10.1016/0038-0717(89)90073-4

    Article  CAS  Google Scholar 

  • Killham K (1985) A physiological determination of the impact of environmental stress on the activity of microbial biomass. Environ Poll A Ecol Biol 38:283–294

    CAS  Google Scholar 

  • Krsek M, Wellington EMH (2006) Studies of microbial community structure and function below ground in a managed upland grassland site at Sourhope Research Station. Appl Soil Ecol 33:127–136 doi:10.1016/j.apsoil.2006.03.008

    Article  Google Scholar 

  • Li X, Fisk MC, Fahey TJ, Bohlen PJ (2002) Influence of earthworm invasion on soil microbial biomass and activity in a northern hardwood forest. Soil Biol Biochem 34:1929–1937 doi:10.1016/S0038-0717(02)00210-9

    Article  CAS  Google Scholar 

  • McLean MA, Parkinson D (2000) Field evidence of the effects of the epigeic earthworm Dendrobaena octaedra on the microfungal community in pine forest floor. Soil Biol Biochem 32:351–360 doi:10.1016/S0038-0717(99)00161-3

    Article  CAS  Google Scholar 

  • Nordgren A (1988) Apparatus for the continuous, long-term monitoring of soil respiration rate in large numbers of samples. Soil Biol Biochem 20:955–957 doi:10.1016/0038-0717(88)90110-1

    Article  CAS  Google Scholar 

  • Pennanen T, Fritze H, Vanhala P, Kiikkila O, Neuvonen S, Baath E (1998) Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain. Appl Environ Microbiol 64:2173–2180

    PubMed  CAS  Google Scholar 

  • Rodwell J (ed) (1992) British plant communities, vol. 3. Grasslands and Montane Communities. Cambridge University Press, Cambridge

  • Scheu S, Schlitt N, Tiunov A, Newington JE, Jones TH (2002) Effects of the presence and community composition of earthworms on microbial community functioning. Oecologia 133:254–260 doi:10.1007/s00442-002-1023-4

    Article  Google Scholar 

  • Sheehan C, Kirwan L, Connolly J, Bolger T (2008) The effects of earthworm functional diversity on microbial biomass and the microbial community level physiological profile of soils. Eur J Soil Biol 44:65–70 doi:10.1016/j.ejsobi.2007.09.004

    Article  Google Scholar 

  • Soil Survey of Scotland (1982) 1:250,000 Soil Survey of Scotland maps and handbooks 1–7. The Macaulay Institute for Soil Research, Aberdeen

    Google Scholar 

  • Stenstrom J, Svensson K, Johansson M (2001) Reversible transition between active and dormant microbial states in soil. FEMS Microbiol Ecol 36:93–104

    PubMed  CAS  Google Scholar 

  • Svensson K, Friberg H (2007) Changes in active microbial biomass by earthworms and grass amendments in agricultural soil. Biol Fertil Soils 44:223–228 doi:10.1007/s00374-007-0200-3

    Article  Google Scholar 

  • Tiunov AV, Bonkowski J, Alphei J, Scheu S (2001) Microflora, Protozoa, and Nematoda in Lumbricus terrestris burrow walls: a laboratory experiment. Pedobiologia (Jena) 45:46–60 doi:10.1078/0031-4056-00067

    Article  Google Scholar 

  • Tiunov AV, Dobrovolskaya G (2002) Fungal and bacterial communities in Lumbricus terrestris burrow walls: a laboratory experiment. Pedobiologia (Jena) 46:595–605 doi:10.1078/0031-4056-00162

    Article  Google Scholar 

  • Tiunov AV, Scheu S (1999) Microbial respiration, biomass, biovolume and nutrient status in burrow walls of Lumbricus terrestris L. (lumbricidae). Soil Biol Biochem 31:2039–2048 doi:10.1016/S0038-0717(99)00127-3

    Article  CAS  Google Scholar 

  • Usher MB, Sier ARJ, Hornung M, Millard P (2006) Understanding biological diversity in soil: the UK’s soil biodiversity research programme. Appl Soil Ecol 33:101–113 doi:10.1016/j.apsoil.2006.03.006

    Article  Google Scholar 

  • Visser S (1985) Soil invertebrates and microbial communities. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions: plants, microbes and animals. Blackwell Scientific, Oxford, pp 297–317

    Google Scholar 

  • Wang GM, Stribley DP, Tinker PB, Walker C (1993) Effects of pH on arbuscular mycorrhiza. I. Field observations on the long-term liming experiments at Rothamsted and Woburn. New Phytol 124:465–472 doi:10.1111/j.1469-8137.1993.tb03837.x

    Article  CAS  Google Scholar 

  • Zhang B, Li G, Shen T, Wang J, Sun Z (2000) Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida. Soil Biol Biochem 32:2055–2062 doi:10.1016/S0038-0717(00)00111-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Natural Environment Research Council NERC funded this research, through the Soil Biodiversity Initiative, Project 2129. We thank Dr. H. Bishop for her assistance with earthworm identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pawlett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawlett, M., Hopkins, D.W., Moffett, B.F. et al. The effect of earthworms and liming on soil microbial communities. Biol Fertil Soils 45, 361–369 (2009). https://doi.org/10.1007/s00374-008-0339-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0339-6

Keywords

Navigation