Biology and Fertility of Soils

, Volume 45, Issue 3, pp 253–263 | Cite as

Biological nitrogen fixation in maize (Zea mays L.) by 15N isotope-dilution and identification of associated culturable diazotrophs

  • Adriana Montañez
  • Cecilia Abreu
  • Paul R. Gill
  • Gudni Hardarson
  • Margarita Sicardi
Original Paper


The nitrogen-fixing capacity of a range of commercial cultivars of maize (Zea mays L.) was evaluated by the 15N isotope-dilution method. Biological nitrogen fixation (BNF) expressed as percent nitrogen derived from air (Ndfa) ranged from 12 to 33 regardless of nitrogen fertilization. BNF was not affected by mineral nitrogen fertilization except on cultivar Topacio and PAU-871 cultivars. Subsequently, culturable bacterial diazotrophs were isolated from endophytic tissue of maize: seed, root, stem, and leaf. All isolates were able to grow on N-free semisolid medium. Eleven bacteria isolates showed nitrogen-fixing capacity by the reduction of acetylene to ethylene and confirmed by PCR the presence of nifH gene in their genome. Identification of the 11 isolates was performed by bacteriological methods, 16S rRNA gene sequences, and phylogenetic analysis, which indicated that the bacteria isolated were closely related to Pantoea, Pseudomonas, Rhanella, Herbaspirillum, Azospirillum, Rhizobium (Agrobacterium), and Brevundimonas. This study demonstrated that maize cultivars obtain significant nitrogen from BNF, varying by maize cultivar and nitrogen fertilization level. The endophytic diazotrophic bacteria isolated from root, stem, and leaf tissues of maize cultivars may contribute to BNF in these plants.


Zea mays L. 15N isotope-dilution Culturable diazotrophs 16S rDNA sequence nif



This work was supported by the International Atomic Energy Agency. We would like to thank Ivanna Taramasco for assistance with the phylogenetic analysis, Claudia Barlocco for technical assistance, and Christine Lucas for review of English.


  1. Alexander DB, Zuberer DA (1989) 15N2 fixation by bacteria associated with maize roots at a low partial O2 pressure. Appl Environ Microbiol 55:1748–1753PubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 doi: 10.1093/nar/25.17.3389 PubMedCrossRefGoogle Scholar
  3. Anuar AR, Shamsuddin ZH, Yaacob O (1995) Contribution of legume-N by nodulated groundnut for growth of maize on an acid soil. Soil Biol Biochem 27:595–601 doi: 10.1016/0038-0717(95)98637-4 CrossRefGoogle Scholar
  4. Assmus B, Hutzler P, Kirchhof G, Amann R, Lawerence JR, Hartmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019PubMedGoogle Scholar
  5. Baldani JL, Caruso L, Baldani VLD, Goi S, Döbereiner J (1997) Recent advances in biological nitrogen fixation with non-legume plants. Soil Biol Biochem 29:911–922 doi: 10.1016/S0038-0717(96)00218-0 CrossRefGoogle Scholar
  6. Berge O, Fages J, Mulard D, Balandreau J (1990) Effects of inoculation with Bacillus circulans and Azospirillum lipoferum on crop-yield in field grown maize. Symbiosis 9:259–266Google Scholar
  7. Boddey RM (1987) Methods for quantification of nitrogen fixation associated with gramineae. CRC Crit Rev Plant Sci 6:209–266CrossRefGoogle Scholar
  8. Boddey RM, Oliveira OC, Urquiaga S, Reis VM, Olivares EL, Baldani VLD et al (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209 doi: 10.1007/BF00032247 CrossRefGoogle Scholar
  9. Boddey RM, Da Silva LG, Reis V, Alves BRJ, Urquiaga S (2000) Assessment of bacterial nitrogen fixation in grass species. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of biological process. Horizon Scientific Press, Norfolk, UK, pp 705–726Google Scholar
  10. Boddey RM, Urquiaga S, Alves BJR, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149 doi: 10.1023/A:1024152126541 CrossRefGoogle Scholar
  11. Bremmer JM, Mulvaney CS (1982) Nitrogen total. In: Page AL, Miller RK, Keeney DR (eds) Methods of soil analysis and microbiological properties, Part 2, 2nd edn. American Society of Agronomy, Madison, pp 595–624Google Scholar
  12. Burris RH (1972) Nitrogen fixation assay-methods and techniques. Methods Enzymol 24:415–431 doi: 10.1016/0076-879(72)24088-5 PubMedCrossRefGoogle Scholar
  13. Caballero-Mellado J, Martínez-Aguilar L, Paredes-Valdez G, Estrada De Los Santos P (2004) Burkholderia unamae sp. nov., and N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172 doi: 10.1099/ijs.0.02951-0 PubMedCrossRefGoogle Scholar
  14. Cavalcante VA, Döbereiner J (1988) A new acid tolerant nitrogen fixing bacterium associated with sugar cane. Plant Soil 108:23–31 doi: 10.1007/BF02370096 CrossRefGoogle Scholar
  15. Chalk PM (1985) Estimation of N2 fixation by isotope dilution: an appraisal of techniques involving 15N enrichment and their application. Soil Biol Biochem 17:389–410 doi: 10.1016/0038-0717(85)90001-X CrossRefGoogle Scholar
  16. Chalk PM (1991) The contribution of associative and symbiotic nitrogen fixation to the nitrogen nutrition of non-legumes. Plant Soil 132:29–39 doi: 10.1007/BF00011009 CrossRefGoogle Scholar
  17. Chelius MK, Triplett EW (2000a) Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl Environ Microbiol 66:783–787 doi: 10.1128/AEM.66.2.783-787.2000 PubMedCrossRefGoogle Scholar
  18. Chelius MK, Triplett EW (2000b) Diazotrophic endophytes associated with maize. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Norfolk, UK, pp 779–792Google Scholar
  19. Chelius MK, Triplett EW (2001) The diversity of Archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263PubMedGoogle Scholar
  20. Christansen-Weniger C, Vanderleyden J (1994) Ammonium-excreting Azospirillum sp. become intracellular established in maize (Zea mays) para-nodules. Biol Fertil Soils 17:1–8 doi: 10.1007/BF00418663 CrossRefGoogle Scholar
  21. Danso SKA (1988) The use of 15N enriched fertilizer for estimating nitrogen fixation in grain and pasture legumes. In: Beck DP, Materon LA (eds) Nitrogen fixation by legumes in Mediterranean agriculture. Martinus Niphoff, Dordrecht, The Netherlands, pp 345–358Google Scholar
  22. Danso SKA, Hardarson G, Zapata F (1993) Misconceptions and practical problems in the use of 15N soil enrichment techniques for estimating N2 fixation. Plant Soil 152:25–52 doi: 10.1007/BF00016331 CrossRefGoogle Scholar
  23. Di Cello F, Bevivino A, Chiarini L, Fani R, Paffetti D, Tabacchion S et al (1997) Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63:4485–4493PubMedGoogle Scholar
  24. Döbereiner J (1992) History and new perspectives of diazotrophs in association with non-legume plants. Symbiosis 13:1–13Google Scholar
  25. Döbereiner J (1995) Isolation and identification of aerobic nitrogen-fixing bacteria from soil and plants. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, London, pp 134–141Google Scholar
  26. Dong Y, Glasner JD, Blattner FR, Triplett EW (2001) Genomic interspecies microarray hybridization: rapid discovery of three thousand genes in the maize endophyte, Klebsiella pneumoniae 342, by microarray hybridization with Escherichia coli K12 open reading frames. Appl Environ Microbiol 67:1911–1921 doi: 10.1128/AEM.67.4.1911-1921.2001 PubMedCrossRefGoogle Scholar
  27. Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato Y, Morisaki H et al (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293 doi: 10.1128/AEM.67.11.5285-5293.2001 PubMedCrossRefGoogle Scholar
  28. Estrada de los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798PubMedCrossRefGoogle Scholar
  29. Fähraeus G (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16:374–381PubMedGoogle Scholar
  30. Fisher PJ, Petrini O, Lappin Scott HM (1992) The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol 122:299–305 doi: 10.1111/j.1469-8137.1992.tb04234.x CrossRefGoogle Scholar
  31. Fuentes-Ramírez LE, Caballero-Mellado J, Sepúlveda J, Martínez-Romero E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29:117–128Google Scholar
  32. García de Salamone IE, Döbereiner J, Urquiaga S, Boddey RM (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol Fertil Soils 23:249–256 doi: 10.1007/BF00335952 CrossRefGoogle Scholar
  33. Gillis M, Kersters K, Hoste B, Kroppenstedt BM, Stephan MF, Teixeira KRS et al (1989) Acetobacter diazotrophicus sp. nov. a nitrogen fixing acetic acid bacterium associated with sugar cane. Int J Syst Bact 39:361–364CrossRefGoogle Scholar
  34. Gregersen T (1978) Rapid method for disitinction of Gram-negative from Gram-positive bacteria. Appl Microbiol Biotechnol 5:123–127 doi: 10.1007/BF00498806 CrossRefGoogle Scholar
  35. Gutiérrez-Zamora ML, Martínez-Romero E (2001) Natural endophytic association between Rhizobium etli and Maize (Zea mays L.). J Biotechnol 91:117–126 doi: 10.1016/S0168-1656(01)00332-7 PubMedCrossRefGoogle Scholar
  36. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophyte in agricultural crops. Can J Microbiol 43:895–914Google Scholar
  37. Hardarson G, Danso SKA (1990) Use of 15N methodology to assess biological nitrogen fixation. In: Hardarson G (ed) Use of nuclear techniques in studies of soil-plant relationships. Training course series no. 2. International Atomic Energy Agency, Vienna, Austria, pp 129–160Google Scholar
  38. Hardarson G, Danso SKA, Zapata F (1988) Dinitrogen fixation measurements in alfalfa ryegras swards using nitrogen 15 and influence of the reference crop. Crop Sci 28:101–105Google Scholar
  39. Hardy RWF, Holsten RD, Jackson EK (1968) The acetylene–etylene assay for N2-fixation, laboratory and field evaluation. Plant Phytol 43:118–127Google Scholar
  40. Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923PubMedGoogle Scholar
  41. IAEA (2001) Manual on “use of isotope and radiation methods in soil and water management and crop nutrition,” IAEA-TCS-14Google Scholar
  42. James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119 doi: 10.1016/S0735-2689(98)00357-8 CrossRefGoogle Scholar
  43. James EK, Reis VM, Olivares FL, Baldani JL, Döbereiner J (1994) Infection of sugarcane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766 doi: 10.1093/jxb/45.6.757 CrossRefGoogle Scholar
  44. James EK, Olivares FL, Baldani JL, Döbereiner J (1997) Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor L. Mocnch. J Exp Bot 48:785–797 doi: 10.1093/jxb/48.3.785 CrossRefGoogle Scholar
  45. Josey DP, Beynon JL, Johnston AWB, Beringer JE (1979) Strain identification in Rhizobium using intrinsic antibiotic resistance. J Appl Bacteriol 46:343–350Google Scholar
  46. Kennedy AC (1994) Carbon utilization and fatty acid profiles for characterization of bacteria. In: Weaver RW, Angle S, Bottomley P (eds) Methods of soil analysis, Part 2. Microbiological and biochemical properties. Soil Sciences Society of America, Madison, pp 543–556Google Scholar
  47. Kennedy IR, Choudhury ATMA, Kecskés ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244 doi: 10.1016/j.soilbio.2004.04.006 CrossRefGoogle Scholar
  48. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 doi: 10.1007/BF01731581 PubMedCrossRefGoogle Scholar
  49. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetic analysis software. Arizona State University, TempeGoogle Scholar
  50. McAuliffe C, Chamblee DS, Uribe-Arango H, Woodhouse WW (1958) Influence of inorganic nitrogen on nitrogen fixation by legumes as revealed by 15N. Agron J 50:334–337Google Scholar
  51. McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342 doi: 10.1007/BF00011472 CrossRefGoogle Scholar
  52. Olson JB, Steppe TF, Litaker RW, Paerl HW (1998) N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microb Ecol 36:231–238 doi: 10.1007/s002489900110 PubMedCrossRefGoogle Scholar
  53. Palus JA, Borneman J, Ludden PW, Triplett EW (1996) Isolation and characterization of endophytic diazotrophs from Zea mays L. and Zea luxurians Iltis and Doebley. Plant Soil 186:135–142 doi: 10.1007/BF00035067 CrossRefGoogle Scholar
  54. Perin L, Martínez-Aguilar L, Castro-González R, Estrada De Los Santos P, Cabellos-Avelar T, Guedes HV et al (2006) Diazotrophic Burkholderia species associated with field-grown maize and sugarcane. Appl Environ Microbiol 72:3103–3110 doi: 10.1128/AEM.72.5.3103-3110.2006 PubMedCrossRefGoogle Scholar
  55. Reichardt K, Hardarson G, Zapata F, Kirda C, Danso SKA (1987) Site variability effect of field measurement of symbiotic nitrogen fixation using the 15N isotope dilution meted. Soil Biol Biochem 19:405–409CrossRefGoogle Scholar
  56. Reinhold-Hurek B, Hurek T, Guillis M, Hoste B, Vancanneyt M, Kersters K et al (1993) Azoarcus gen. nov. a nitrogen fixing Proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth), and description of two species Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 43:574–588CrossRefGoogle Scholar
  57. Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144 doi: 10.1016/S0966-842X(98)01229-3 PubMedCrossRefGoogle Scholar
  58. Reis FB Jr, Reis VM, Urquiaga S, Döbereiner J (2000) Influence of nitrogen fertilization on the population of diazotrophic Herbaspirillum spp. and Gluconacetobacter diazotrophicus in sugar cane (Saccharum spp.). Plant Soil 219:153–159 doi: 10.1023/A:1004732500983 CrossRefGoogle Scholar
  59. Rennie RJ (1980) 15N isotope dilution as a measure of dinitrogen fixation by Azospirillum brasilense associated with maize. Can J Bot 58:21–24Google Scholar
  60. Rennie RJ (1986) Advantages and disadvantages of nitrogen-15 isotope dilution to quantify dinitrogen fixation in field-grown legumes-a critique. In: Hauck RD, Weaver RW (eds) Field measurements of dinitrogen fixation and denitrification. Soil Science Society of America Special Publication no. 18, American Society of Agronomy, Madison, WI, USA, pp 43–58Google Scholar
  61. Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28:829–836Google Scholar
  62. Roesch LFW, Olivares FL, Pereira Pasaglia LM, Selbach PA, Saccol de Sa EL, Oliveira de Camargo FA (2006) Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen-supply. World J Microbiol Biotechnol 22:967–974 doi: 10.1007/s11274-006-9142-4 CrossRefGoogle Scholar
  63. Roesch LFW, Camargo FAO, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302:91–104 doi: 10.1007/s11104-007-9458-3 CrossRefGoogle Scholar
  64. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837 doi: 10.1094/MPMI-19-0827 PubMedCrossRefGoogle Scholar
  65. Ruppel S, Hecht-Buchholz C, Remus R, Ortmann U, Schmelzer R (1992) Settlement of the diazotrophic, phytoeffective bacterial strain Pantoea agglomerans on and within winter wheat: an investigation using ELISA and transmission electron microscopy. Plant Soil 145:261–273 doi: 10.1007/BF00010355 CrossRefGoogle Scholar
  66. Saito N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  67. Schloter M, Hartmann A (1998) Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies. Symbiosis 25:159–179Google Scholar
  68. Tapia-Hernandez A, Bustillos-Cristales MR, Jimenéz-Selgado I, Caballero-Mellado J, Fuentez-Ramirez IF (2000) Natural endophytic occurrence of Acetobacter diazotrophicus in pineapple plants. Microb Ecol 39:49–55 doi: 10.1007/s002489900190 PubMedCrossRefGoogle Scholar
  69. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 doi: 10.1093/nar/22.22.4673 PubMedCrossRefGoogle Scholar
  70. Triplett EW (1996) Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant Soil 186:29–38 doi: 10.1007/BF00035052 CrossRefGoogle Scholar
  71. Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen balance estimates. Soil Sci Soc Am J 56:105–114Google Scholar
  72. Vande Broek A, Michiels J, Van Gool A, Vanderleyden J (1993) Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH gene during association. Mol Plant Microbe Interact 6:592–600Google Scholar
  73. Von Bulow CFW, Döbereiner J (1975) Potential for nitrogen fixation in maize genotypes in Brazil. Proc Natl Acad Sci U S A 72:2389–2393 doi: 10.1073/pnas.72.6.2389 CrossRefGoogle Scholar
  74. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar
  75. Witty JF (1983) Estimating N2-fixation in the field using 15N labeled fertilizer: some problems and solutions. Soil Biol Biochem 15:631–639 doi: 10.1016/0038-0717(83)90026-3 CrossRefGoogle Scholar
  76. Yoneyama T, Muraoka T, Kim H, Dacanay EV, Nakanishi Y (1997) The natural 15N abundance of sugarcane and neighboring plants in Brazil, the Philippines and Miyako (Japan). Plant Soil 189:239–244 doi: 10.1023/A:1004288008199 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Adriana Montañez
    • 1
    • 3
  • Cecilia Abreu
    • 1
  • Paul R. Gill
    • 2
    • 3
  • Gudni Hardarson
    • 4
  • Margarita Sicardi
    • 1
  1. 1.Laboratorio de Microbiología del Suelo, Centro de Investigaciones Nucleares (CIN). Facultad de CienciasUniversidad de la República Oriental del UruguayMontevideoUruguay
  2. 2.Laboratorio de Tecnología Molecular, Facultad de CienciasUniversidad de la República Oriental del UruguayMontevideoUruguay
  3. 3.Laboratorio de Ecología Microbiana, Departamento de BioquímicaInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
  4. 4.Soil Science Unit, FAO/IAEAAgency’s Laboratories SeibersdorfViennaAustria

Personalised recommendations